L3 — Topologie des espaces métriques Épreuve du 12 janvier 2018 — Durée : 3 heures

Aucun document n'est autorisé. Justifier vos affirmations. Une attention particulière sera portée à la rédaction.

Exercice 1. (4 points) Soit (E,d) un espace métrique ayant au moins 2 éléments. Soit X une partie finie non vide de E. Pour chaque question ci-dessous, donner une preuve si la réponse est affirmative, sinon trouver un contre-exemple simple.

- 1a. Est-ce que X est nécessairement une partie fermée de E?
- **1b.** Est-ce que X est nécessairement une partie compacte de E?
- 1c. Est-ce que X est nécessairement une partie complète de E?
- **1d.** Est-ce que X est nécessairement une partie connexe de E?

Exercice 2. (4 points) Soit X un ensemble non vide. On note par F l'ensemble des parties finies de X. Pour $A, B \in F$, on désigne par $A \Delta B$ la différence symétrique de A et B. Rappelons que $A \Delta B = (A \setminus B) \cup (B \setminus A)$. Pour tous $A, B \in F$, on pose $\delta(A, B) = \operatorname{card}(A \Delta B)$.

- **2a.** Montrer que δ définit une distance sur F.
- **2b.** Soit $A \in F$. Déterminer la boule ouverte B(A, 1).
- **2c.** Caractériser les parties ouvertes de (F, δ) .

Exercice 3. (5 points) Rappelons que $\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$ est le cercle unité de \mathbb{C} . On munit \mathbb{C} de sa norme usuelle, c'est-à-dire le module de nombres complexes.

- **3a.** Montrer que \mathbb{S}^1 est une partie connexe de \mathbb{C} .
- **3b.** Montrer que \mathbb{S}^1 est une partie compacte de \mathbb{C} .
- **3c.** En déduire que si $f: \mathbb{S}^1 \to \mathbb{R}$ est continue alors il existe un $z \in \mathbb{S}^1$ tel que f(z) = f(-z).
- 3d. En déduire que \mathbb{S}^1 n'est pas homéomorphe à une partie de \mathbb{R} .

Exercice 4. (7 points) On considère \mathbb{R}^2 muni du produit scalaire $\langle x,y\rangle = \sum_{i=1}^{i=2} x_i y_i$ pour $x=(x_1,x_2)$ et $y=(y_1,y_2)$. On note la norme et la distance euclidienne associées à ce produit scalaire par $\|\cdot\|$ et d respectivement, i.e., $\|x-y\| = d(x,y) = \left(\sum_{i=1}^{i=2} (x_i - y_i)^2\right)^{1/2}$.

Soit K une partie compacte convexe non vide de \mathbb{R}^2 . Pour $x \in \mathbb{R}^2$, on note par $d(x,K) := \inf_{y \in K} d(x,y)$ la distance de x à K. (Indication pour cet exercice : Faites des dessins!)

- **4a.** Montrer que pour $x \in K^{\complement}$, on a d(x, K) > 0.
- **4b.** Montrer que pour $x \in K^{\mathbb{C}}$, il existe un point $x' \in K$ tel que d(x, x') = d(x, K).
- **4c.** Utiliser la convexité de K pour établir l'unicité de x'.
- **4d.** Pour $x \in K^{\mathbb{C}}$, on note par p_x l'unique point de K tel que $d(x, p_x) = d(x, K)$. Montrer que pour tout $x \in K^{\mathbb{C}}$, p_x appartient à la frontière ∂K de K.