Examen d'Algèbre 2 Session 2 -

Exercice 1 (Questions de cours) :

- 1. Soit G un groupe et H et K deux sous groupes de G.
 - (a) Montrer que l'ensemble H.K est un sous groupe de G si et seulement si H.K = K.H.
 - (b) On suppose que H est un sous groupe normal de G. Montrer que H.K est un sous groupe de G.
- 2. Soient H, Q et G trois groupes.
 - (a) Donner la définition d'une suite exacte courte scindée.
 - (b) Énoncer le théorème de caractérisation de produit semi-direct par les suites exactes.
- 3. Soit G un groupe et X un ensemble non vide et $\star : G \times X \to X$ une action de G sur X.
 - (a) Soit $x \in X$. Donner la définition de l'orbite $\mathcal{O}(x)$ et du stabilisateur G_x de l'élément x.
 - (b) Montrer que si deux éléments x et y ont la même orbite, alors les stabilisateurs G_x et G_y sont conjugués.
 - (c) Montrer que si X est fini, alors le cardinal de l'orbite $\mathcal{O}(x)$ est égal à l'indice du stabilisateur $[G:G_x]$.

Exercice 2 : Soient G un groupe, H et K deux sous-groupes normaux de G.

- 1. Démontrer que le sous-groupe engendré par $H \cup K$ est normal.
- 2. On suppose que $H \cap K = \{1_G\}$.
 - (a) Montrer que $\forall h \in H, \forall k \in K, hk = kh$.
 - (b) Montrer que HK est un sous-groupe normal de G et que $HK \simeq H \times K$.

Exercice 3 : Soit G un groupe fini non trivial dont l'élément neutre est noté 1_G et tel que pour tous $x, y \in G$ différents de 1_G , il existe un élément g de G tel que $x = gyg^{-1}$.

- 1. Montrer que si $x, y \in G \setminus \{1_G\}$ alors x et y sont du même ordre.
- 2. En déduire que G est un p-groupe, où p est un nombre premier.
- 3. On fait agir G sur lui même par conjugaison : $(g,x) \in G \times G \to gxg^{-1} \in G$.
 - (a) Montrer que chaque orbite est soit de cardinal 1 ou une puissance non triviale de p.
 - (b) Montrer que G possède deux classes de conjugaison (deux orbites).
 - (c) En déduire que G est un groupe d'ordre 2.

 $\underline{\textbf{Exercice}} \ \textbf{4} : \text{Soit} \ \mathbb{A} = \left\{ \left(\begin{array}{cc} x & 0 \\ y & x \end{array} \right), \ x,y \in \mathbb{Z} \right\}.$

- 1. Montrer que l'ensemble A muni de l'addition et de la multiplication des matrices est un anneau commutatif.
- 2. Déterminer l'ensemble $\mathcal{U}(\mathbb{A})$ des éléments inversibles de l'anneau $\mathbb{A}.$
- 3. Montrer que l'ensemble $\mathcal{I}=\left\{\left(\begin{array}{cc}0&0\\y&0\end{array}\right),\;y\in\mathbb{Z}\right\}$ est un idéal de l'anneau A
- 4. Montrer que \mathcal{I} est un idéal premier de \mathbb{A}
- 5. Montrer que $\mathcal I$ n'est pas un idéal maximal de $\mathbb A$ (on pourra montrer que $\mathbb A/\mathcal I$ est isomorphe à $\mathbb Z$).

Exercice 5 : Soit G l'ensemble des matrices à coefficients réels de la forme $M(x,y,z) = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$ muni de la multiplication des matrices.

- 1. Montrer que G est un sous-groupe de $GL_3(\mathbb{R})$. (On donnera les résultats M(x,y,z)M(a,b,c) et $M(x,y,z)^{-1}$ en faisant les calculs au brouillon).
- 2. Donner le centre Z(G) du groupe G.
- 3. Montrer que le groupe quotient $(G/Z(G), \times)$ est isomorphe au groupe additif $(\mathbb{R}^2, +)$.
- 4. On considère la suite

$$\{0\} \longrightarrow \mathbb{R} \stackrel{\imath}{\longrightarrow} G \stackrel{\pi}{\longrightarrow} \mathbb{R}^2 \longrightarrow \{(0,0)\} \ , \ \text{ avec } \imath(z) = M(0,0,z) \ \text{ et } \pi(M(x,y,z)) = (x,y).$$

- (a) Montrer que la suite est exacte et préciser Im i.
- (b) On veut montrer par l'absurde que la suite n'est pas scindée. Supposons la suite précédente scindée. Soient $s: \mathbb{R}^2 \longrightarrow G$ une section et $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}$ telles que

$$\forall (x,y) \in \mathbb{R}^2, \ s(x,y) = M(x,y,\varphi(x,y)).$$

- i. Montrer que l'image du morphisme s est un sous groupe abélien de G.
- ii. En calculant de deux façons s(x+x',y+y') montrer que l'on aboutit à une contradiction.