Contrôle terminal - 3h

Aucun document n'est autorisé.

Justifier vos affirmations. Une attention particulière sera portée à la rédaction.

Dans tout le sujet, (E, d) et (F, d') sont deux espaces métriques. Les ensembles \mathbb{R} , \mathbb{R}^2 , \mathbb{C} et \mathbb{C}^2 seront munis de leur distance usuelle.

Exercice 1.

Soit $f: E \to F$ une application continue.

- 1) Montrer que si E est compact alors f est uniformément continue.
- 2) Existe-t-il une application $g: \mathbb{R} \to \mathbb{R}$ qui soit uniformément continue?
- 3) Donner un exemple d'application continue $h: \mathbb{R} \to \mathbb{R}$ qui n'est pas uniformément continue. (Pour ces deux dernières questions, justifiez bien vos réponses)

Exercice 2.

On note $\Delta_{\mathbb{R}} := \{(x,y) \in \mathbb{R}^2 \mid x=y\}$ et $\Delta_{\mathbb{C}} := \{(x,y) \in \mathbb{C}^2 \mid x=y\}$. Parmi les ensembles ci-dessous, lesquels sont connexes et lesquels ne sont pas connexes. Dans tous les cas, justifiez vos réponses.

1) $\mathbb{R} \setminus \{0\}$, 2) $\mathbb{C} \setminus \{0\}$, 3) $\mathbb{R}^2 \setminus \Delta_{\mathbb{R}}$, 4) $\mathbb{C}^2 \setminus \Delta_{\mathbb{C}}$, 5) $\Delta_{\mathbb{R}}$.

Exercice 3.

On suppose qu'il existe deux éléments x_0 , x_1 de E tels que $x_0 \neq x_1$.

- 1) Expliquer comment construire une application continue $f: E \to \mathbb{R}$ telle que $f(x_0) = 0$ et $f(x_1) = 1$.
- 2) En déduire que si l'on rajoute l'hypothèse que E est connexe alors E ne peut pas être dénombrable.

Exercice 4.

Soit $f: E \to F$ une application.

- 1) Montrer que les deux caractérisations de la continuité ci-dessous sont équivalentes.
 - i) $\forall x \in E, \forall \epsilon > 0, \exists \eta > 0$ tel que $\forall y \in E, d(x, y) \leq \eta$ implique $d'(f(x), f(y)) \leq \epsilon$.
 - ii) Pour tout ouvert V de F, $f^{-1}(V)$ est un ouvert de E.
- 2) Soit g une deuxième application entre E et F. Soit $A \subset E$ une partie dense de E. Montrer que si f et g sont continues et que $f_{|A} = g_{|A}$ alors f = g.

Exercice 5.

Soit A et B deux parties denses de \mathbb{R} . Peut-on avoir $A \cap B = \emptyset$? Si oui, donner un exemple. Si cela n'est pas possible, donner une preuve de cette impossibilité.

Exercice 6.

1) Soit $(x_n)_{n\geq 0}$ une suite de E qui converge vers $x\in E$. Montrer que $X:=\{x_n\mid n\geq 0\}\cup\{x\}$ est un compact de E.

Soit $f \colon E \to F$ une application continue. On dit que f est fermé si l'image par f d'un fermé de E est un fermé de F. On dit que f est f est un compact de f es

- 2) Montrer que si E est compact alors f est propre.
- 3) Montrer que si f est propre alors f est fermé. Indication : si V est un fermé de E et $(y_n)_{n\geq 0}$ est une suite de f(V) qui converge vers $y\in F$ alors on pourra considérer l'ensemble $X:=\{y_n\mid n\geq 0\}\cup\{y\}$.