UNIVERSITE DE BOURGOGNE

Année 2022-2023

U.F.R. Sciences et Techniques

13 décembre 2022

Filière: L2-Chim3A

Session: 1

EPREUVE

Chimie inorganique Chim3A - Session 2

Durée : 2 h 00

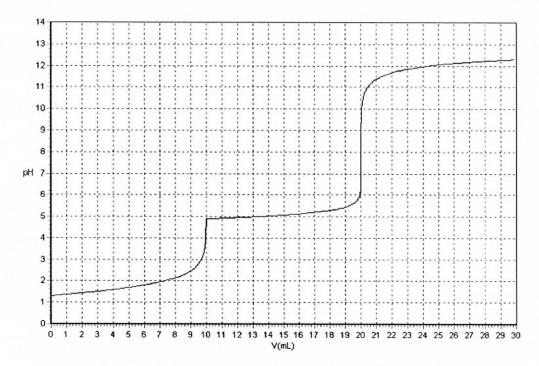
Aucun document autorisé – calculatrice autorisée

La chimie du cuivre

I. Stabilisation du cuivre (I) par précipitation

- I.1. Ecrire les demi-équations de réduction pour les couples Cu⁺/Cu_(s) et Cu²⁺/Cu⁺.
- I.2. Déduire des données thermodynamiques à 25°C la réaction spontanée d'oxydoréduction résultante entre ces deux couples.
- I.3. Ecrire la relation entre la constante d'équilibre K de cette réaction et la différence entre les potentiels standards des couples $Cu^+/Cu_{(s)}$ et Cu^{2+}/Cu^+ .
- I.4. Calculer la valeur de K et conclure.
- I.5. Comparer les réponses faites en I.2. et I.4. et discuter.
- I.6. Les ions cuivre (I) forment avec les ions iodure I^- le précipité $Cul_{(s)}$. Ecrire l'équilibre de solubilité correspondant.
- 1.7. Ecrire les demi-équations de réduction pour les couples Cul_(s)/Cu_(s) et Cu²⁺/Cul_(s).
- 1.8. En déduire la relation de Nernst pour les couples Cul_(s)/Cu_(s) et Cu²⁺/Cul_(s).
- 1.9. Exprimer le potentiel standard $E^{\circ}_{Cul(s)/Cu(s)}$ du couple $Cul_{(s)}/Cu_{(s)}$ en fonction de $pK_{s}(Cul)$ et du potentiel standard $E^{\circ}_{Cu+/Cu(s)}$ du couple $Cu^{+}/Cu_{(s)}$.
- 1.10. Exprimer également le potentiel standard $E^{\circ}_{Cu2+/Cul(s)}$ du couple $Cu^{2+}/Cul_{(s)}$ en fonction de $pK_{s}(CuI)$ et du potentiel standard $E^{\circ}_{Cu2+/Cu+}$ du couple Cu_{2}^{+}/Cu^{+} .
- 1.11. Calculer E°_{Cul(s)/Cu(s)} et E°_{Cu2+/Cul(s)} et expliquer comment les ions iodures stabilisent les ions cuivre (I).

II. Propriétés acido-basiques du cuivre (II)


II.1. Ecrire l'équilibre acido-basique du couple Cu²⁺/CuOH⁺ et calculer le pH d'une solution aqueuse contenant 0,01 mol/L d'ions Cu²⁺.

Lorsqu'on augmente le pH, l'ion Cu²⁺ peut donner un précipité de Cu(OH)_{2(s)}.

- II.2. Calculer le pH de début de précipitation de $Cu(OH)_2$ dans la solution aqueuse contenant 0,01 mol/L d'ions Cu^{2+} .
- II.3. Déduire des deux questions précédentes quelle est l'espèce cuivrée dissoute majoritairement présente lorsque Cu(OH)₂ commence à précipiter ?

Dans la suite du problème, on néglige de fait l'acidité de l'ion Cu²⁺ et donc l'existence de l'espèce CuOH⁺.

On réalise le dosage pH-métrique de 10 mL d'une solution contenant de l'acide nitrique HNO₃ et des ions cuivre II (Cu²⁺) par une solution d'hydroxyde de sodium NaOH à 0,10 mol/L. La courbe du dosage est visualisée ci-dessous.

- II.4. A partir du bilan des espèces présentes en solution, écrire les équations bilans des deux réactions qui ont lieu au cours de ce dosage et calculer leur constante d'équilibre.
- II.5. Quel est l'ordre de réalisation des deux réactions précédentes ? Justifier.
- II.6. Calculer la concentration en acide nitrique et la concentration en ions cuivre II de la solution.
- II.7. Déterminer graphiquement la valeur du produit de solubilité de Cu(OH)_{2(s)}.

Données à 25°C:

$$E^{\circ}_{Cu+/Cu(s)} = 0.52 \text{ V/ENH}$$

$$E^{\circ}_{Cu2+/Cu+} = 0.16 \text{ V/ENH}$$

$$R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$$

$$F = 96500 C$$

$$pK_s$$
 (CuI) = 11,96

$$pK_s (Cu(OH)_2) = 19,7$$

$$pK_a(Cu^{2+}/CuOH^+) = 7,2$$

A 25°C:
$$\frac{RT}{F} \ln x = 0.06 \log x$$