UNIVERSITE DE BOURGOGNE

UFR Sciences et Techniques

Filière: Licence 2 Maths/Physique - Physique - Physique/Chimie

Session: 2

Année 2022-2023 Mardi 6 juin 2023

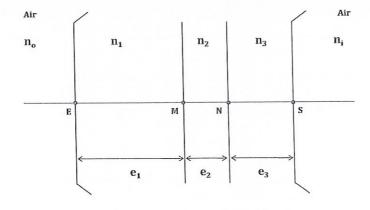
CONTROLE TERMINAL

Optique matricielle & Photométrie Phys4C

Durée 2h - Sans document, calculatrice autorisée, téléphones portables <u>éteints</u>. Les 2 exercices sont indépendants et peuvent être traités dans un ordre indifférent. La présentation et la rédaction de la copie seront prises en compte.

Exercice I: Optique matricielle

On rappelle que la matrice de conjugaison d'un système centré est donnée en fonction de la vergence V du système et du grandissement transversal G_T par $T(\overline{A_oA_i}) = \begin{pmatrix} G_T & 0 \\ -V & \frac{1}{G_T} \end{pmatrix}$ où A_i est l'image de A_o à travers le système considéré. Les indices des milieux objet et image sont respectivement notés n_o et n_i .


- 1. Rappelez la définition des points principaux objet H_o et image H_i d'un système. Donnez la matrice de conjugaison $T(\overline{H_oH_i})$.
- 2. Rappelez la définition des distances focale objet f_o et image f_i . Calculez la matrice de transfert entre foyers $T\left(\overline{F_oF_i}\right)$.
- 3. On pose $\sigma_o = \overline{F_o A_o}$ et $\sigma_i = \overline{F_i A_i}$. Utilisez la matrice $T\left(\overline{F_o F_i}\right)$ pour écrire une nouvelle forme de la matrice $T\left(\overline{A_o A_i}\right)$ puis, par identification, retrouvez la formule de conjugaison avec origines aux foyers (formule de Newton).
- 4. L'objectif d'une lunette travaillant dans l'air $(n_o = n_i = 1)$ est constitué de deux dioptres plans et de deux dioptres sphériques (cf. Fig ci-dessous) avec les caractéristiques suivantes :

Indices: $n_1 = 1.5$, $n_2 = 1.2$, $n_1 = 1.8$.

Epaisseurs : $e_1 = 3$ cm, $e_2 = 1.2$ cm, $e_3 = 1.8$ cm.

Rayons de courbure : $R_E = 10$ cm, $R_S = 40$ cm.

- (a) Exprimez en fonction de ces caractéristiques les vergences V_E et V_S des dioptres sphériques et donnez leurs valeurs numériques. Déduisez-en (numériquement) les matrices de réfraction associées aux quatre dioptres : R(E), R(M), R(N) et R(S).
- (b) Calculez la matrice de transfert T(ES) de l'objectif.
- (c) Déduisez-en la vergence de l'objectif, ainsi que ses distances focales objet f_o et image f_i . L'objectif est-il convergent ou divergent?
- (d) Déterminez la position des points principaux objet H_o et image H_i .

Exercice II : Photométrie

Les questions 1 et 2 sont indépendantes.

- 1. Une ampoule éléctrique de puissance $P=75\,W$ et d'intensité lumineuse constante dans toutes les directions $I=90\,\mathrm{cd}$ est suspendue à une hauteur $h_0=3\,m$ au-dessus d'un plan. Calculez :
 - (a) Calculez le flux lumineux F reçu par le plan.
 - (b) L'efficacité lumineuse k de cette lampe.
 - (c) L'éclairement E_0 du point du plan situé juste à la verticale sous la lampe.
 - (d) La hauteur h_1 à laquelle il faut placer la lampe pour augmenter l'éclairage précédent de 30%
- 2. Une ampoule électrique de flux lumineux $F=1500\,\mathrm{lm}$ rayonne uniformément dans toutes les directions. Elle se trouve à la hauteur $h=1,5\,m$ au-dessus du plan d'une table. Une personne lit un livre posé sur cette table. L'éclairement en un point du livre situé à la distance d de la verticale passant par l'ampoule est $E=25\,\mathrm{lux}$. L'angle entre les rayons lumineux arrivant sur le livre et la verticale est noté α (cf. Fig. (1)).
 - (a) Déterminez l'intensité lumineuse de l'ampoule.
 - (b) En utilisant la loi de Bouguer, démontrez que $\cos\alpha = \sqrt[3]{\frac{Eh^2}{I}}$
 - (c) Déduisez-en la valeur de d.

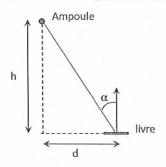


FIGURE 1 -