Année: 2020-2021 Date: 17 mai 2023

UE66A - Physicochimie des Matériaux Durée : 2 h 00 - (Documents non autorisés)

Les traitements thermiques dans la masse des aciers (4 points)

On se propose d'étudier le TTT de l'acier C55.

- ☐ Identifier les différents domaines du TTT représenté sur la Figure 1.
- Décrire de manière précise ce qu'il se passe après un refroidissement en 1 seconde de 900°C jusqu'à 600°C puis un maintien de 15 minutes suivi d'une trempe à l'eau. Représenter la micrographie attendue après un poli miroir et une attaque chimique au Nital.
- Décrire de manière précise ce qu'il se passe après un refroidissement en 1 seconde de 900°C jusqu'à 400°C puis un maintien de 15 minutes suivi d'une trempe à l'eau. Représenter la micrographie attendue après un poli miroir et une attaque chimique au Nital.
- ☐ Rappeler le principe d'un essai de dureté. Quelles sont les différentes méthodes que vous connaissez ? Expliquer leurs différences.

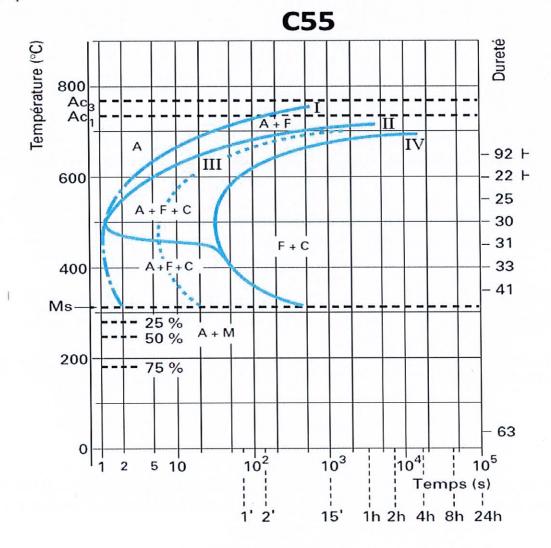


Figure 1: TTT de l'acier C55

Les traitements thermiques dans la masse des aciers (6 points)

On se propose d'étudier les TRC des aciers 45Mn5 et C70.

- ☐ Expliquer les principales différences entre ces deux aciers.
- ☐ Identifier les différents domaines des TRC des Figures 2a et 2b.
- ☐ Pour l'acier 45Mn5, décrire ce qu'il se passe pour un échantillon ayant subi une trempe permettant d'obtenir une dureté de 35HRC.

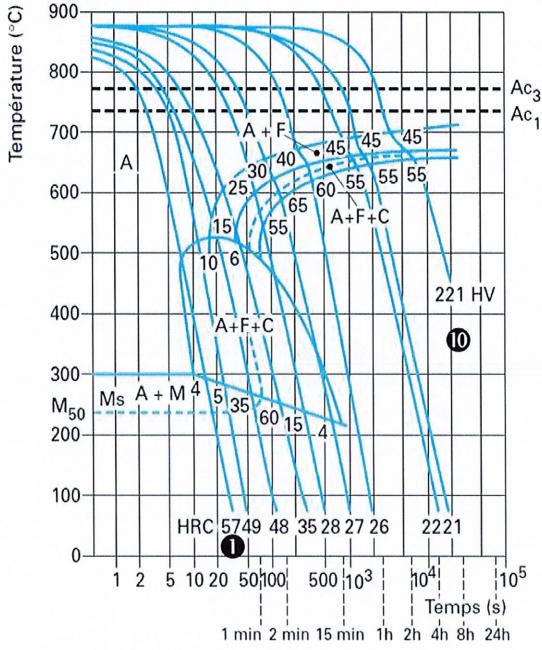


Figure 2a - TRC de l'acier 45 Mn5

Tracer sur la figure 3a pour l'acier 45M5, en la commentant de manière précise, la courbe dilatométrique attendue pour un refroidissement conduisant à un acier trempé présentant une dureté de 27HRC.

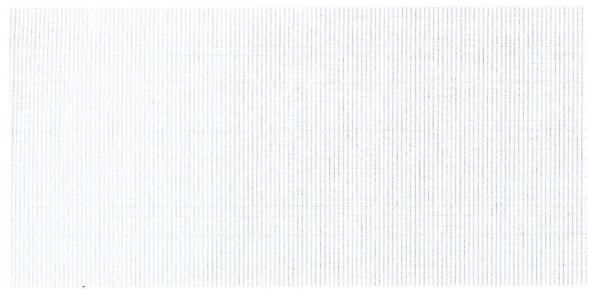


Figure 3a: Courbe dilatométrique à tracer.

☐ Pour l'acier C70 (Figure 2b), décrire ce qu'il se passe pour un échantillon ayant subi une trempe permettant de d'obtenir une dureté de 38HRC.

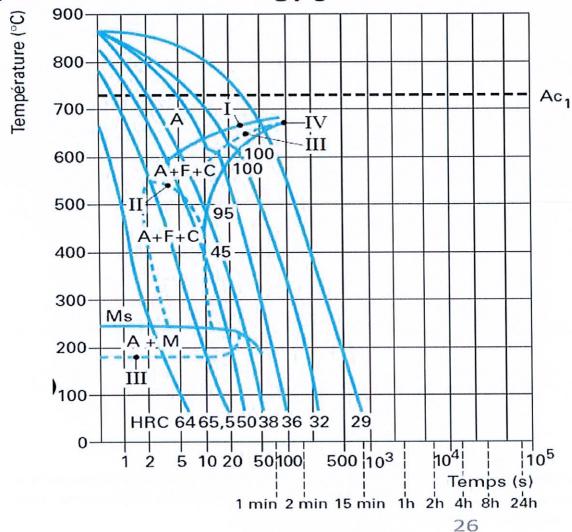


Figure 2b: TRC de l'acier C70

☐ Tracer sur la figure 3b pour l'acier C70, en la commentant de manière précise, la courbe dilatométrique de revenu de 25°C jusqu'à 650°C de la pièce trempée possédant une dureté de 64HRC.

Figure 3b: Courbe dilatométrique à tracer.

Propriétés mécaniques, l'essai de traction (3 points)

La figure 4 présente des courbes de traction d'aciers contenant différents pourcentages de carbone.

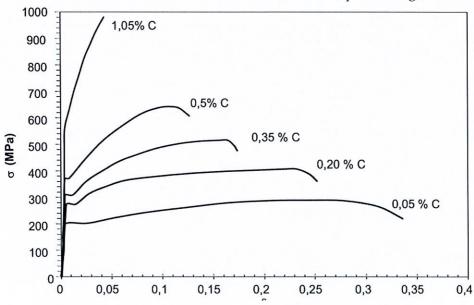


Figure 4: Essais de traction de différents aciers.

- Rappeler le principe d'un essai de traction et préciser les grandeurs habituellement accessibles.
- ☐ A partir de la Figure 4, tracer l'évolution de Re et du A% en fonction du pourcentage de carbone et commenter les résultats obtenus.
- ☐ Citer d'autres moyens de durcissement des aciers.

Propriétés mécaniques, l'essai de résilience (2 points)

- □ Sur la figure 5, sont représentés quatre différents faciès de rupture notés de 1 à 4. Quatre valeurs d'énergie de rupture ont été obtenues expérimentalement, 3J, 84J, 176J et >à 300J. Attribuer pour chaque faciès, l'énergie de rupture associée en justifiant vos choix.
- Quelles sont les différents types de rupture que l'on peut rencontrer dans des aciers ?

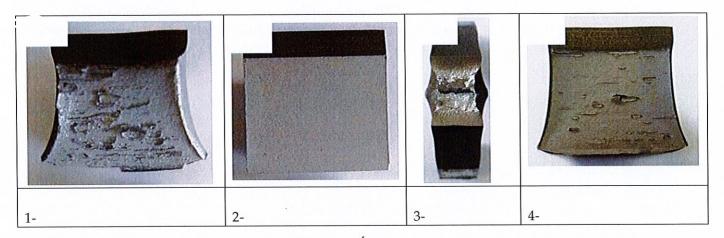


Figure 5: Faciès de rupture de différentes éprouvettes de résilience

Q.C.M. Corrosion (5 points)

Cocher la ou les bonnes réponses pour chaque question. Aucune justification n'est demandée. Barème : bonne réponse : +1 point / mauvaise réponse : -1 point / absence de réponse : 0 point. Note minimale de l'exercice : 0/5.

 \triangleright Le tableau 1 ci-dessous présente les densités de courant équivalentes à un taux de corrosion de 1 $g/(m^2.jour)$ pour différents métaux.

Réaction	Densité de courant :
$A1 = A1^{3+} + 3e$	0,124 A/m ²
$Cd = Cd^{2+} + 2e$	2,98 μA/cm ²
$Cu = Cu^{2+} + 2e$ -	0,0352 A/m ²
$Mg = Mg^{2+} + 2e$ -	9,19 μA/cm²
$Ni = Ni^{2+} + 2e$	0,0831 A/m ²
$Sn = Sn^{2+} + 2e$	1,88 μA/cm²

Tableau 1

Question $n^{\circ}1$: Cocher le métal o tableau est erronée : □ Al	u les métaux pour le(s)q □ Cd □ Cu	uel(s) la valeu □ Mg	r de densite □ Ni	é de courant fournie □ Sn	dans le
Lors d'une expérience réa pour du fer dans une solu				. linéaire ΔE ^{exp} /ΔI ^{exp}	obtenue
Question n°2 : En utilisant la loi taux de corrosion du fer ainsi cal		erme $i_{cor} = (\beta_a \beta$	$_{c}/(\beta_{a}+\beta_{c}))\Delta I$	$e^{\exp/\Delta E^{\exp}}$ avec $\beta_a = \beta_c =$	=0,1 V, le
□ environ de 1.10 ⁻⁴ mm/an	□ environ de 3.10 ⁴ n	nm/an [☐ environ 1	,2 mm/an	
environ 0,1 mm/an	□ environ 0,3 mm/a		⊐ environ 1	2 μm/an	
Soit up môtal M (M = M3	+ + 30-) se corrodant avec	un taux de co	orrosion de	0.01 A/m ²	

Question n°3: Le nombre de moles d	l'électrons relâchés par la consommat	ion de ce métal M est :
☐ Environ de 1.10-8 mol/m²/s	\square environ de 1.10 ⁺¹ nmol/m ² /s	\square environ de 1.10-1 μ mol/m ² /s
☐ environ de 1.10-3 mmol/m2/s	\square environ de 3,5.10-8 mol/m ² /s	
□ incalculable, il manque la valeur d	e la masse molaire de M pour procéde	er à l'application numérique
de la partie immergée de surf de 25 années dans l'hypothès active (M' = M'^{n+} + ne-) et ce, ont permis de déterminer les de mer : (M' =Fe, n=2) En conditi	face S d'un tel édifice après une pério se où le métal M' représente ses jaml sans aucun moyen de protection. Des	
	du temps la mer soit calme, la masse d	calculable à l'aide de la loi de Faraday
est:		
□ égale à environ 2,5% de la	masse globale de la plateforme	
□ égale à environ 85 tonnes		
□ égale à environ 0,6 ‰ de la	a masse globale de la plateforme	

□ de valeur supérieure à toutes celles listées ci-dessus

Données pouvant être utiles :

 \Box comprise entre 10 et 30 tonnes \Box comprise entre 3 et 4 tonnes

Métal	Cu	Cd	Ni	Fe	Sn	Al	Mg
M (g/mol)	63,5	112,4	58,7	55,8	118,7	27	24,3
Densité	8,96	8,65	8,01	7,87	7.31	2.70	1.74

Abaque Landolt:

	$\frac{\text{mol}}{\text{m}^2\text{s}}$	$\frac{\text{mol}}{\text{cm}^2\text{s}}$	$\frac{A}{m^2}$	$\frac{\mu A}{cm^2}$	$\frac{mg}{dm^2j}$	mm an
$\frac{\text{mol}}{\text{m}^2\text{s}}$	ı	10-4	$9.65 \times 10^4 \ n$	$9.65 \times 10^6 \ n$	$8.64 \times 10^5 M$	$3.15 \times 10^4 \frac{M}{\rho}$
$\frac{\text{mol}}{\text{cm}^2 \text{s}}$	104	1	$9.65 \times 10^{8} \ n$	$9.65 \times 10^{10} \ n$	$8.64 \times 10^9 \ M$	$3.15 \times 10^8 \frac{M}{\rho}$
$\frac{A}{m^2} \\$	$\frac{1.04\times10^{-5}}{n}$	$\frac{1.04\times10^{-9}}{n}$	1	100	$8.96 \frac{M}{n}$	$0.327 \frac{M}{n \rho}$

M= masse atomique en g/mol, $\rho=$ masse volumique en g/cm³, n= nombre de charges (adimensionnel)

1 an=365,25 jours, R=8,314 S.I., Température : 300 K, S=500 m², F=96 500 C/mol, $\rho(eau) = 1 \text{ g/cm}^3$