UNIVERSITE DE BOURGOGNE U.F.R. Sciences et Techniques

Filière: Licence 3 Informatique

Session 1

EPREUVE:

Examen Synthèse d'Image janvier 2023

Durée: 1h30

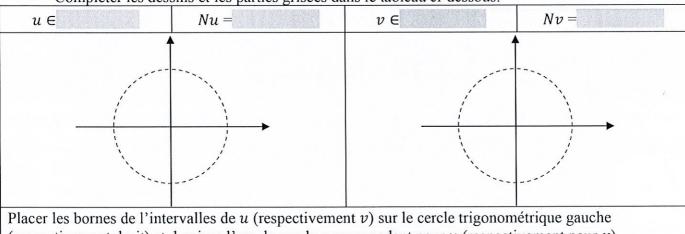
Seul document autorisé : une feuille A4 recto-verso manuscrite. Les exercices peuvent être traités indépendamment les uns des autres. Le barème est donné à titre indicatif.

N° d'anonymat:

Partie 1 : Modélisation de la poire de Tannery à partir de sa représentation paramétrique (environ 10

But: Modéliser sous forme de facettes une poire de Tannery de coefficient a=1.5 et k=1.

Le nombre de discrétisation de la poire dans la direction u est Nu et dans la direction v est Nv. Toutes les faces de la poire sont quadrilatérales.


$$\begin{cases} x(u,v) = \frac{k}{2} \times a \times \sin(2u) \times \cos(v) \\ y(u,v) = \frac{k}{2} \times a \times \sin(2u) \times \sin(v) & avec \\ z(u,v) = a.\sin(u) \end{cases} \quad u \in \left[0, \frac{\pi}{2}\right]$$

parties.

 \checkmark Donner la longueur des intervalles de u et v.

1. Discrétisation de la poire de Tannery avec Nu = 4 et Nv = 6.

✓ Compléter les dessins et les parties grisées dans le tableau ci-dessous.

(respectivement droit) et dessiner l'arc de cercle correspondant pour u (respectivement pour v).

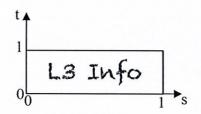
Placer les points de discrétisation sur l'arc de cercle trigonométrique correspondant pour u et v.

L'intervalle est découpé en L'intervalle est découpé en parties. Donner ci-dessous le nombres de parties de chaque intervalle en fonction de Nu et Nv.

Nombre de parties de v =Nombre de parties de u =


Licence 3 Informatique,						S. Lanquetin
our $Nu = 4$ et $Nv = 6$, on obtient le maillage ci-contre. numérotation des sommets est donnée.					20 19	
						14 33 33 13
L'indice de boucle sur 1						17 23
✓ Donner le nombr		imets et d	de faces	de la poi	re en 15	
fonction de Nu et	t Nv.					
						16 17
						8
						1
/ F 1/1 ' 1 C		1 1/ 1				
✓ En déduire les fo				du et du	, -	/
de u et de v en fo	nction de	e Nu et a	e Nv.			10// / / 11/
						2-Li
2 Dannan la 11-4 - 1				1 1	. 11	3 4. 5
2. Donner la liste des	indices o	ie somme	ets par ta	ce dans l	e tableau	ci-après. En déduire une formule de
indices de points qu	ui iormei	it une fac	e pour cl	naque 1 e	n fonctio	n de j, Nu et Nv .
	Indice	Indice	e des sor	nmets pa	Indice	Indices des sommets d'une face en
	face	1er	2 nd	3ème	4ème	fonction de j, Nu et Nv
	race	sommet	sommet	sommet	sommet	Tonetion de j, wa et w
i=0	0	0	1	7	6	
81 77	1					
69	2					
10	3					
25.15	4		miles of			
3 41 51 01	5					
i=1						
141 27 23						
124						
165 75						
61						
100						
i=2						
215 185						
14 20 19 13						
121						
161 171						
		L				
✓ En déduire une fe	ormule o	énérale r	our les i	ndices d	e comme	ts par face en fonction de Nu, Nv,
(indice de boucle	cur u) et	i (indica	do bouel	la our 11)	c somme	is par face en fonction de Na, NV,
(marce de boucie	sui u) ci) (maice	de bouc	ie sui vj.		
(D 111 11		2				
✓ Donner l'indice d						
Nu, Nv , i (indic		icle sur	u) et j			
(indice de boucle	sur v).				. 4 21 _1	
				2/7		
				· ·		

				<pre>class Point public: float x float y float z };</pre>
4. Écrire l'algorith sommets en fonc	me pour remplir letion de <i>Nu</i> et <i>Nv</i> .	a liste pPoire des	coordonnées et la	liste fPoire des indices o


Licence 3 Informatique, Synthèse d'Images janvier 2023,

S. Lanquetin

5. Compléter la fonction poireTannery(...) permettant de dessiner une poire de tannery de paramètres a, k en précisant Nu et Nv.

Exercice 3 : Textures (environ 2 points) On utilise la texture ci-contre.

1. Modifier la fonction poireTannery (...) pour plaquer la texture L3Info sur chaque facette.

2. Modifier la for	e, Synthèse d'In nction poireTar	nnery ()	pour découper	la texture L3In	S. La fo afin de l'enro	uler su
la poire.						
					7	TIA
					10	Th
					San	
					*	
oit une transformatic ecteur (0,0,-1). 1. Donner l'expr	on M composée	d'une rotation				
oit une transformation ecteur (0,0,-1).	on M composée	d'une rotation				
oit une transformatic ecteur (0,0,-1). 1. Donner l'expr	on M composée	d'une rotation				
oit une transformation octeur (0,0,-1). 1. Donner l'expr	on M composée	d'une rotation				
oit une transformatic ecteur (0,0,-1). 1. Donner l'expr	on M composée	d'une rotation				
oit une transformation octeur (0,0,-1). 1. Donner l'expr	on M composée	d'une rotation				
oit une transformatic ecteur (0,0,-1). 1. Donner l'expr	on M composée	d'une rotation				
oit une transformatic ecteur (0,0,-1). 1. Donner l'expr	on M composée	d'une rotation				
oit une transformatic ecteur (0,0,-1). 1. Donner l'expr	on M composée ression de cette	d'une rotation				
oit une transformation ecteur (0,0,-1). 1. Donner l'exprox R et T.	on M composée ression de cette	d'une rotation				
R et T.	on M composée ression de cette	d'une rotation				
oit une transformation ecteur (0,0,-1). 1. Donner l'exprox R et T.	on M composée ression de cette	d'une rotation				
oit une transformation ecteur (0,0,-1). 1. Donner l'exprox R et T.	on M composée ression de cette	d'une rotation				
oit une transformation ecteur (0,0,-1). 1. Donner l'exprox R et T.	on M composée ression de cette	d'une rotation				

Licence 3	Informatique,	Synthèse d	'Images	ianvier	2023.
	J · · · · · · · · · · · · · · · ·	27		,	,

S. Lanquetin

3. Donner l'expression de cette transformation sous la forme d'une matrice homogène M en fonction des matrices R et T.

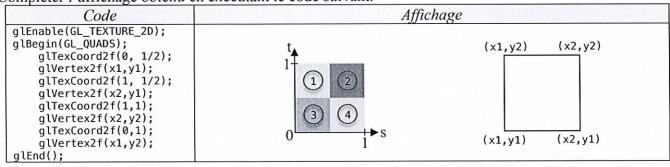
4. Calculer M.

5. Soit P le point de coordonnées (0,1,1,1). Donner les coordonnées du point P' image de P par la

transformation M (toujours en coordonnées homogènes).

6. Placer P et P' dans le repère suivant :

S. Languetin Licence 3 Informatique, Synthèse d'Images janvier 2023, Partie 3 : Cours (environ 5 points) Écrire la réponse dans les cadres. Question 1: A quelle transformation correspond la matrice ci-contre. Préciser ses paramètres. 0 Question 2: A quelle transformation correspond la matrice ci-contre. Préciser ses paramètres. 0


Question 3:

Compléter l'affichage obtenu en exécutant le code suivant.

Affichage		
V[5] V[6] V[4]		
•		
V[3] • V[2]		
V V [2]		
v[0] v[1]		

Question 4:

Compléter l'affichage obtenu en exécutant le code suivant.

Question 5:

Le pourcentage de chaque composante réfléchi par le matériau de la poire est : R=25%, V=25% et B=50%. Si elle est éclairée avec la lumière de composantes R=1/2, V=1/2 et B=1/4, calculer les valeurs

de R, V et B du rayon de couleur réfléchi par la poire et préciser sa couleur.