Contrôle terminal CHIM3B – Session 2

Calculatrices autorisées. Il sera tenu compte du français et de la présentation dans la notation.

A - Structure cristallographique : Le Silicium (45 min / 7,5 points)

Le silicium cristallise dans une structure cubique à faces centrées dans laquelle un site tétraédrique sur deux est occupé par un atome de Si.

- 1. En fonction de la nature des liaisons mises en jeu, indiquer à quel type de solide cristallisé on a affaire ? Quel corps simple possède une structure analogue ?
- 2. Représenter soigneusement sur la feuille annexe cette structure en faisant apparaître les liaisons entre atomes de Si.
- 3. Déterminer (on justifiera chaque réponse) :
 - a. la coordinence des atomes de Si,
 - b. le nombre d'atomes de Si par maille,
 - c. le rayon covalent de l'atome de Si, noté R_{Si} , en fonction du paramètre de maille a,
 - d. la compacité de la structure.
- 4. Calculer a et Rsi (résultats en nm ou en pm).
- 5. Quelles sont les valeurs maximales des rayons des lacunes tétraédriques et octaédriques présentes dans cette maille. Exprimer en fonction de R_{Si} puis faire l'application numérique (résultats en nm ou en pm).
- 6. Le silicium forme avec le carbone un composé très dur, réfractaire et inerte chimiquement : le carborundum. Le silicium cristallise dans une structure cubique à faces centrées dans laquelle un site tétraédrique sur deux est occupé par un atome de Carbone. Quelle est la formule du carborundum. Trouver la relation entre le paramètre de maille a et les rayons covalents R_{SI} et R_C .

données pour $Si: M_{Si} = 28,1 \text{ g.mol}^{-1}, \rho_{Si} = 2330 \text{ kg.m}^{-3}$

Nombre d'Avogadro : $Na = 6,02.10^{23}$

B - Diagramme de phase cristobalite (SiO₂) - alumine (Al₂O₃) (45 min / 7,5 points)

On donne le diagramme de phase isobare cristobalite-alumine (feuille annexe à rendre avec la copie).

- 1 Sur le diagramme, identifier le liquidus et le solidus.
- 2 Compléter le tableau figurant sous le diagramme (feuille annexe).
- **3** Les silicates d'aluminium anhydres naturels, *sillimanite*, *andalousite* et *kyanite*, qui répondent à la formule chimique Al₂SiO₅, se transforment à haute température en mullite, avec libération de silice, selon la réaction irréversible :

$$3 \text{ Al}_2 \text{SiO}_5 = 3 \text{ Al}_2 \text{O}_3.2 \text{ SiO}_2 + 2 \text{ SiO}_2$$

Cette formule chimique donnée pour la mullite est-elle cohérente avec son domaine de stabilité indiqué dans le diagramme ? (justifier la réponse)

- 4 Schématiser l'allure de la courbe de refroidissement d'un mélange contenant 30% mol d'alumine, en précisant les valeurs des températures de transition, les phénomènes physiques auxquelles elles sont liées, ainsi que la nature des phases en présence sur chaque portion de courbe.
- **5** Quelle est la masse de liquide restant lorsque **100g** du mélange précédent est à la température de 1700°C ?

C - Complexes (30 min / 5 pts)

1 - Nommer les complexes suivants :

 $[Mn(SCN)_6]^{4-}$

K₃[Fe(CN)₆]

[Co(NH₃)₆]Cl₃

Na[I(Cl)₄]

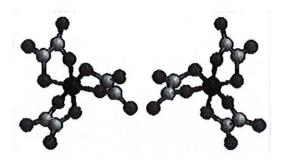
2 - Pour chacun des ions complexes octaédriques suivants :

[Fe(CN)₆]⁴⁻

 $[Mn(H_2O)_6]^{2+}$

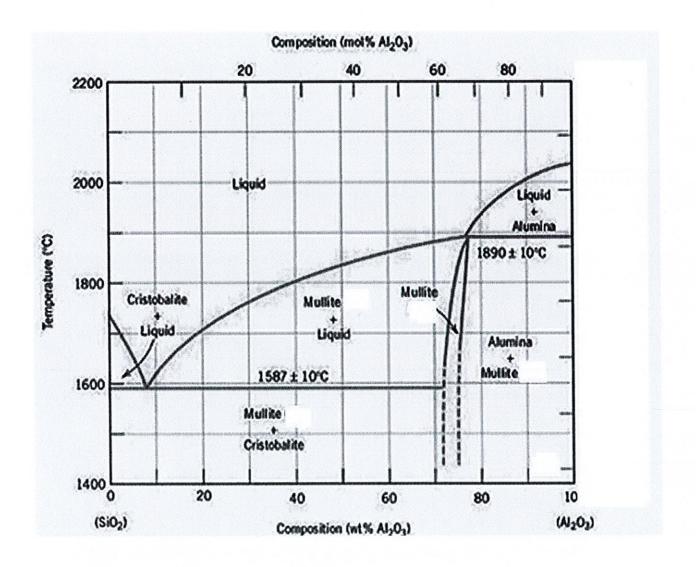
Schématiser le remplissage des niveaux électroniques d d'après le modèle du champ cristallin, sachant que les ions cyanure sont des ligands à champ fort et que l'eau est un ligand à champ faible.

Données: Fe: Z = 26; Mn: Z = 25

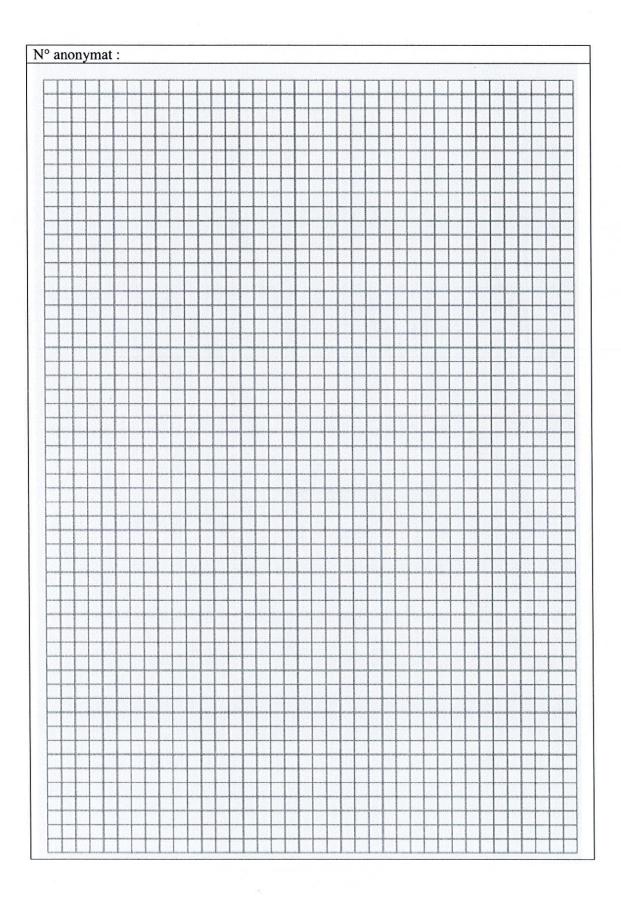

3 - Préciser quel type d'isomérie caractérise les complexes suivants :

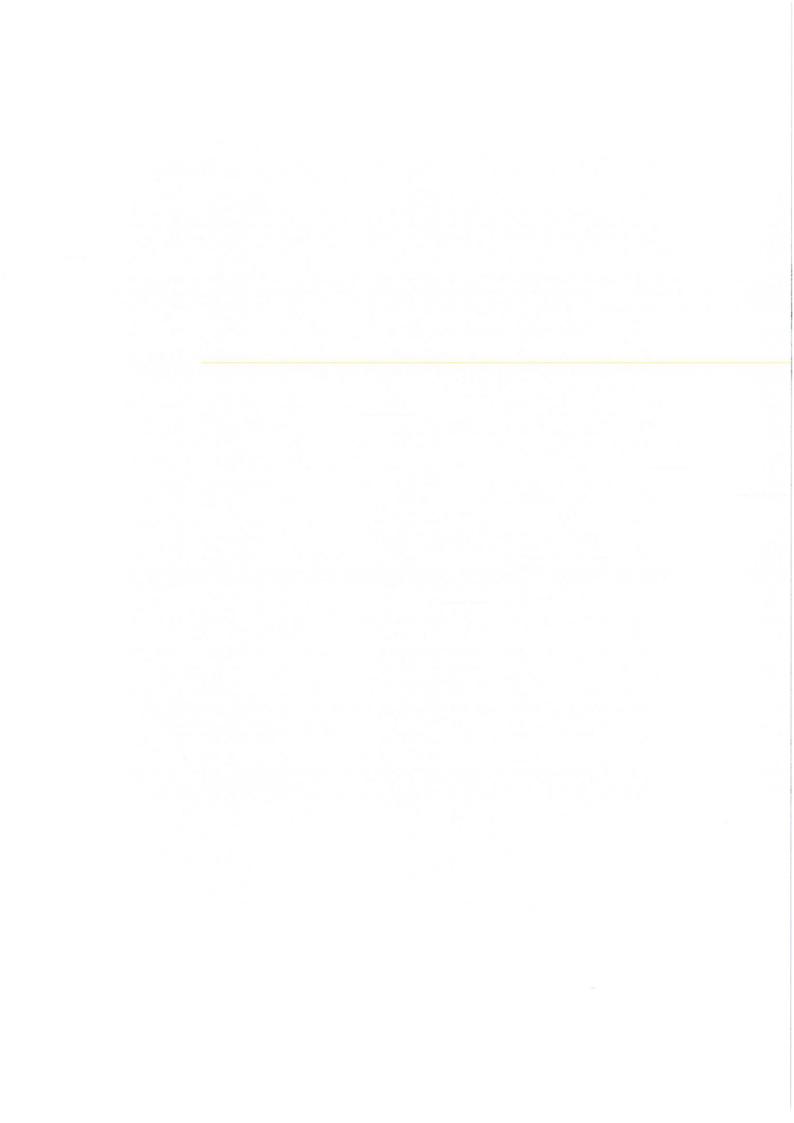
Couple 1:

$$\begin{bmatrix} Cl \\ H_3N \\ H_3N \\ Cl \end{bmatrix} NH_3 \\ Cl \\ NH_3 \end{bmatrix} + \begin{bmatrix} Cl \\ H_3N \\ NH_3 \end{bmatrix} + \begin{bmatrix} Cl \\ H_3N \\ NH_3 \end{bmatrix} + \begin{bmatrix} Cl \\ NH_3 \\ NH_3 \end{bmatrix} + \begin{bmatrix} Cl \\ NH_3 \\ NH_3 \end{bmatrix} + \begin{bmatrix} Cl \\ H_3N \\ NH_3$$


https://chemed.chem.purdue.edu/genchem/topicreview/bp/ch12/isomers.php

Couple 2:




http://www.foad.uadb.edu.sn/mod/book/view.php?id=1758&chapterid=1012

4 - Les ions Ag^+ forment avec CN^- l'ion complexe dicyanoargentate (I), dont la constante de dissociation K_d est de 10^{-20} . On considère une solution A de nitrate d'argent et une solution B de cyanure de potassium ayant la même concentration égale à 4×10^{-2} mol/L. On mélange deux volumes identiques de solutions A et B. En faisant le moins de calculs possibles et en justifiant les approximations utilisées, calculer la concentration finale de toutes les espèces présentes en solution.

a - Température de fusion de la cristobalite	
b - Température de liquidus pour un mélange	
contenant 20% mol en cristobalite	
c - Température péritectique	
d - Nom et nature des phases présentes à la	
température eutectique	
e - Nature du solide formé par la mullite	

