Examen

durée: 2h

La calculatrice est interdite

Questions de cours (4 pts)

Soit I un intervalle ouvert, f une fonction définie sur I et $x_0 \in I$

- 1. Donner la définition de f est majorée sur I.
- 2. Donner la définition de f est continue en x_0 .
- 3. Supposons que f est continue en x_0 . Soit (x_n) une suite de I convergeant vers x_0 . Quelle est la limite de la suite $(f(x_n))$? Démontrez-le avec les quantificateurs.

Exercice 1 (4 pts)

- 1. Résoudre dans \mathbb{R} l'inégalité $x < \sqrt{2-x}$.
- 2. Notons $E = \{x \in]-\infty; 2]: x < \sqrt{2-x}\}$. Déterminer, s'ils existent, $\inf(E)$, $\min(E)$, $\sup(E)$, $\max(E)$.

Exercice 2 (4 pts)

Soit (u_n) une suite géométrique de raison $q \neq 1$ et de premier terme $u_0 \neq 0$.

- 1. Donner, sans démonstration, l'expression de u_n en fonction de n, q et u_0 .
- 2. A quelle condition la suite (u_n) converge-t-elle vers 0?
- 3. Donner l'expression de $\sum_{k=0}^{n} u_k$ en fonction de n, q et u_0 .
- 4. Démontrer par récurrence sur $n \in \mathbb{N}$ l'expression donnée en question 3.

Exercice 3 (4 pts)

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par :

$$f(x) = \begin{cases} 0 & \text{si } x \leq 0\\ x^3 \sin(1/x) & \text{si } x > 0 \end{cases}$$

- 1- Montrer que f est continue sur \mathbb{R} , dérivable sur \mathbb{R} et calculer sa dérivée pour tout $x \in \mathbb{R}$
- 2- Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} .
- **3-** Montrer que f' n'est pas dérivable en 0.

Exercice 4 (4 pts)

Soit
$$f(x) = \frac{\ln(e^x + x^2) - x}{\sin x}$$

- 1. Donner un développement limité en 0 de f(x) à l'ordre 2.
- 2. En déduire que f est prolongeable par continuité en 0 et que son prolongement est dérivable en 0. Donner l'équation de la tangente au graphe de ce prolongement en 0 ainsi que la position du graphe par rapport à cette tangente. Faire un dessin.