Contrôle terminal – 2h

Aucun document ou calculatrice n'est autorisé. Justifiez vos affirmations. Une attention particulière sera portée à la rédaction.

Pour toute la suite, G est une groupe dont la loi est notée multiplicativement et dont l'élément neutre est noté e.

Exercice 1.

Soit H et F deux sous-groupes de G.

- 1) A-t-on forcément que $F \cup H$ est un sous-groupe de G? Si oui le montrer. Si non, donner un triplet (G, H, F) pour lequel ce n'est pas le cas.
- 2) A-t-on forcément que $F \cap H$ est un sous-groupe de G? Si oui le montrer. Si non, donner un triplet (G, H, F) pour lequel ce n'est pas le cas.

Exercice 2.

Soit H et F deux sous-groupes de G. On note $HF = \{ab \mid a \in H, b \in F\}$. Montrer que HF est un sous-groupe si et seulement si $FH \subset HF$ (où $FH = \{ba \mid a \in H, b \in F\}$).

Exercice 3.

Soit $\psi: G \to (\mathbb{R}^*, \times)$ un morphisme de groupes. On suppose que G est un groupe fini. On suppose également que $\ker(\psi) \neq G$ et on pose $K := \ker(\psi)$.

- 1) Si $x \in G \setminus K$, déterminer $\psi(x)$.
- **2)** Soit $z, y \in G$. A-t-on $\psi(yzy^{-1}) = \psi(z)$?
- 3) Soit $x \in G \setminus K$. Montrer que $xK := \{xy \mid y \in K\}$ vérifie
- i) $xK \cap K = \emptyset$,
- ii) $G = K \cup xK$,
- iii) Card(xK) = Card(K).

Exercice 4.

Soit $k \in \mathbb{N}^*$. Soit $x \in G$ un élément d'ordre k.

- 1) Montrer que si $p \in \mathbb{N}^*$ est tel que $x^p = e$ alors p divise p.
- 2) Supposons ici que k = 51. Quel est l'ordre de x^3 ?

Exercice 5.

Soit $n \in \mathbb{N}^*$. Supposons que G soit fini d'ordre 2n.

- 1) Montrer que si H est un sous-groupe d'ordre n de G alors xH = Hx pour tout $x \in G$. Rappelons que $xH := \{xh \mid h \in H\}$ et $Hx := \{hx \mid h \in H\}$.
- 2) On suppose maintenant qu'il existe deux sous-groupes H_1 et H_2 d'ordre n de G tels que

$$H_1 \cap H_2 = \{e\}.$$

- a) Montrer que l'application $f: H_1 \times H_2 \to G$ définie par f(x,y) = xy est injective.
- b) En déduire que n=1 ou n=2.