

Durée : 2h. Les questions en italique sont des questions de cours.

Exercice 1. Soit $(\lambda, \mu) \in \mathbb{R}^2$ et soit $E = M_2(\mathbb{R})$ l'ensemble des matrices réelles de taille 2. On posc

$$q(M) = \mu \det(M) + \lambda \operatorname{tr}(M^2),$$
 pour tout $M \in E$.

- (1) Quelle est la dimension de l'espace vectoriel E?
- (2) Pour $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, calculer q(M) en fonction de a, b, c, d puis montrer que q est une forme quadratique.
- (3) Pour $(\lambda, \mu) = (1, 2)$, calculer le rang et le noyau de q.
- (4) Pour $(\lambda, \mu) = (1, -2)$, calculer le rang et la signature de q.
- (5) Pour $(\lambda, \mu) = (1, 1)$, calculer la signature de q.
- (6) Pour $(\lambda, \mu) = (0, 1)$, trouver $F, G \subset E$ plans avec $q|_F$ définie positive et $q|_G$ définie négative.

Exercice 2. Soit $E = \mathbb{R}^3$ muni du produit scalaire standard et f l'endomorphisme de E dont la matrice en la base canonique est :

$$M = \frac{1}{9} \begin{pmatrix} 8 & -1 & -4 \\ -4 & -4 & -7 \\ 1 & -8 & 4 \end{pmatrix}.$$

- 1. Montrer que f est orthogonal.
- 2. Trouver une réflexion orthogonale s telle que $s \circ f$ est une rotation dont on précisera l'axe et l'angle.
- 3. Justifier que f est diagonalisable sur $\mathbb C$ mais pas sur $\mathbb R$.
- 4. Montrer que f^2 est une rotation dont on précisera l'axe et l'angle.

Exercice 3. Étant donné un entier n > 1, notons M la matrice $(m_{i,j})_{1 \le i,j \le n}$ définie par

$$m_{1,1} = 0,$$
 et, pour tout $(i,j) \neq (1,1)$: $m_{i,j} = \begin{cases} 0, & \text{si } i > 1 \text{ et } j > 1, \\ (-1)^{i+j}, & \text{si } i = 1 \text{ ou } j = 1. \end{cases}$

- 1. Justifier que M est diagonalisable en une base orthonormale de vecteurs propres.
- 2. Calculer $\operatorname{rg}(M)$. Justifier que $\ker(M)^{\perp}$ est stable par M, en donner une base \mathcal{B} et calculer $M(\mathcal{B})$.
- 3. Pour n=5, trouver une base or honormale de vecteurs propres de M.
- 4. Pour tour n, k > 1, donner les valeurs propres de M^k avec leur multiplicité.

Exercice 4. Soit E espace vectoriel réel, $n = \dim(E) > 0$ et φ forme bilinéaire symétrique sur E.

- (a) Soit $A \subset E$. Donner la définition de l'orthogonal A^{\perp} de A par rapport à φ .
- (b) Montrer que A^{\perp} est un sous espace vectoriel de E et que $\operatorname{vect}(A)^{\perp} = A^{\perp}$.
- (c) Soit $E = \mathbb{R}^2$ et $\varphi((x_1, x_2), (y_1, y_2)) = x_1 y_2 + x_2 y_1$. Calculer $\{(1, 0)\}^{\perp}$.
- (d) Soit F un sous espace vectoriel de E. Montrer que $\dim(F) + \dim(F^{\perp}) \geq n$.
- (e) Définir « φ est dégénérée » puis montrer que dans ce cas il existe F avec $\dim(F) + \dim(F^{\perp}) > n$.
- (f) Montrer que si φ est non dégénérée alors $\dim(F) + \dim(F^{\perp}) = n$.
- (g) Trouver un exemple de E et φ non dégénérée avec $F \subset E$ sous espace satisfaisant $F = F^{\perp}$.
- (h) Dans la question (g), quelle doit être la signature de la forme quadratique q associée à φ ?