

Université de Bourgogne

L1 Sciences & Techniques - Physique Générale (Phys2A)

2^{nde}- 1h30 - calculatrice autorisée - aucun document

Lors des applications numériques, vérifier le nombre de chiffres significatifs et l'unité

		_
N	M	
	# IV	

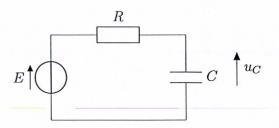
Prénom:

Exercice 1 – (barème approximatif 8 points)

1. On considère le circuit ci-contre. Le condensateur est initialement déchargé $u_c(0) = 0$.

Données : $R = 10 \Omega$; $C = 1.0 \cdot 10^{-6} \, \text{F}$; $E = 12 \, \text{V}$

a) Préciser le sens du courant dans le circuit (directement sur le schéma).

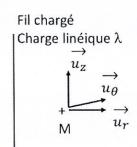


b)	Etablir l'équ	ation différentielle	que suit $u_c(t)$) (faire	la démonstration	dans le	e cadre).
----	---------------	----------------------	-------------------	----------	------------------	---------	-----------

c) La tension aux bornes du condensate	eur est (admis) $u_c(t) = E(1 - e^{-t/\tau})$ où $\tau = RC$.
τ a la dimension :	d) On calcule

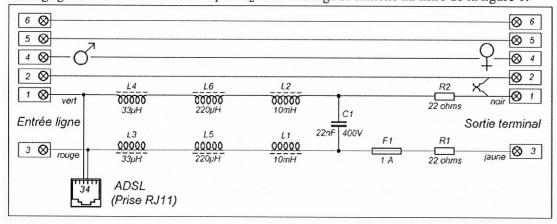
- \square d'une intensité $[\tau] = I$
- \square d'un temps $[\tau] = T$
- \Box d'une intensité par unité de temps $[\tau] = I \cdot T^{-1}$
- d) On calcule
 - $\Box \tau = 1.0 \cdot 10^{-5} \,\mathrm{s}$ $\Box \tau = 1.0 \cdot 10^{-5} \,\mathrm{s}^{-1}$
 - $\Box \tau = 1 \cdot 10^{-5} \,\mathrm{s}$
- e) L'énergie stockée dans le condensateur est
- $\square \mathcal{E} = CE^2$
- $\square \mathcal{E} = \frac{1}{2}CE^2$
- $\square \mathcal{E} = \frac{1}{2}CE$

- f) On calcule (plusieurs réponses possibles)
 - $\square \mathcal{E} = 7.2 \cdot 10^{-5} \,\mathrm{J}$
 - $\square \mathcal{E} = 7.20 \cdot 10^{-5} \,\mathrm{J}$
 - $\square \mathcal{E} = 72 \,\mu J$
- 2. On souhaite établir la forme du champ électrique $\vec{E}(M)$ à proximité d'un fil vertical infini, portant une charge linéique λ . Dans le repère cylindrique
- $(\vec{u}_r, \vec{u}_\theta, \vec{u}_z);$
- a) Les propriétés d'invariance imposent la forme suivante :
- $\Box \vec{E}(M) = \vec{E}(r,z)$
- $\square \vec{E}(M) = \vec{E}(z)$
- $\Box \vec{E}(M) = \vec{E}(r)$
- b) Les propriétés de symétrie imposent la forme suivante :
- $\Box \vec{E}(M) = E(M)\vec{u}_r$
- $\square \vec{E}(M) = E(M)\vec{u}_{\theta}$
- $\Box \vec{E}(M) = E(M)\vec{u}_z$
- c) L'unité de charge linéique λ est :
- $\square V \cdot m^{-1}$
- $\square \ \mathrm{C} \cdot \mathrm{m}^{-1}$
- $\square \ C \cdot V^{-1}$

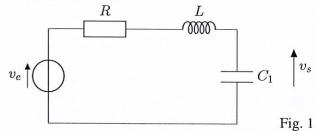


Exercice 2 – Filtre ADSL (barème indicatif 12 points)

Pour pouvoir simultanément téléphoner et utiliser internet, il faut équiper les prises téléphoniques d'un filtre ADSL. La figure ci-dessous représente le schéma du cablage électrique d'un filtre ADSL commercialisé (type « gigogne »). La partie de filtre qui nous intéresse est comprise entre les branches 1 et 3 (entrée ligne et sortie terminal). La résistance du téléphone branché à la sortie étant élevée (600 Ω , on peut considérer que l'intensité du courant est négligeable dans les branches R_1 et R_2 et le montage se ramène au filtre de la figure 1.



On considère finalement le filtre suivant. La tension d'alimentation et la tension de sortie s'écrivent respectivement $v_e(t) = U_e \cos \omega t$ et $v_s(t) = U_s \cos(\omega t + \varphi)$



- 1. Rappeler les expressions des impédances complexes \underline{Z}_R d'une résistance R, \underline{Z}_C d'un condensateur de capacité C et \underline{Z}_L d'une bobine d'inductance L.
- 2. Justifier que l'association des bobines L_4 , L_6 et L_2 (voir le schéma de cablage) est équivalent à une seule bobine d'impédance $L_{eq}=10{,}253\,\mathrm{mH}$ en régime sinusoïdal permanent. Les bobines ne sont pas idéales et présentent une résistance équivalente $R_{eq}=23{,}0\,\Omega$ (admis). Le même raisonnement étant valable pour la branche L_3 , L_5 , L_1 , la résistance totale du circuit de la figure 1 est $R=1{,}5\,\mathrm{k}\Omega$ et l'inductance totale du circuit de la figure 1 est $L=20{,}506\,\mathrm{mH}$ (admis).
- 3. Exprimer la fonction de transfert $\underline{H}(j\omega) = \frac{v_s}{v_e}$
- 4. a) Montrer que le gain peut se mettre sous la forme

$$G(\omega) = \frac{1}{\sqrt{(1 - LC_1\omega^2)^2 + R^2C_1^2\omega^2}}$$

- b) Calculer $\lim_{\omega \to 0} G(\omega)$.
- c) Etablir la forme asymptotique $G(\omega) \sim_{\omega \to \infty} \omega_0^2/\omega^2$ avec $\omega_0 = 1/\sqrt{LC_1}$.
- d) Calculer ω_0 puis $G(\omega_0)$.
- 5. a) Tracer sur l'annexe (à rendre avec votre copie) l'asymptote haute-fréquence du gain puis tracer $G(\omega)$.
 - b) Quelle est la nature du filtre? Etablir graphiquement la pulsation de coupure ω_c telle que $G(\omega_c) = 1/\sqrt{2}$. Quelle est la fréquence f_c correspondante?
 - c) Le téléphone, branché en sortie du filtre, ne doit récupérer que les sons audibles, de fréquences $f \le 5.0 \, \mathrm{kHz}$ et ne pas recevoir les signaux internet de fréquences $f \ge 100 \, \mathrm{kHz}$. Ce filtre convient-il?

Données $C_1 = 22 \cdot 10^{-9} \,\mathrm{F}, \, L = 20{,}506 \cdot 10^{-3} \,\mathrm{H} \,; \, R = 1{,}5 \cdot 10^3 \,\Omega.$