Examen Algèbre linéaire et bilinéaire L3, 9/1/2025 – durée : 2 heures –

L'usage de tout appareil électronique est interdit. Les documents ne sont pas non plus autorisés. La rédaction et la clarté des arguments seront prises en compte dans la notation.

Exercice 1.

(i) (QC) Enoncer et démontrer l'inégalité de Cauchy-Schwarz.

(ii) En déduire que si Φ est un forme hermitienne positive sur un \mathbb{K} -espace vectoriel E de dimension finie, alors le cône isotrope C_{Φ} est égal à $\operatorname{Ker} \Phi$.

Exercice 2. Soient

$$A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}.$$

Déterminer les invariants de similitude et la réduction de Frobenius de A et de B.

Exercice 3.

(i) Déterminer les classes de similitude des endomorphismes de \mathbb{R}^5 dont le polynôme caractéristique est $(X-2)^5$. Donner dans chaque cas les invariants de similitude.

(ii) Même question pour les classes de similitude des endomorphismes de \mathbb{R}^6 dont le polynôme caractéristique est $(X-1)^3(X-2)^2(X-3)$.

Exercice 4. Soit $E_2 = \mathbb{C}[X]_{\leq 2}$. On définit

$$\varphi: E_2 \times E_2 \to \mathbb{C}, \ \varphi(P,Q) = \int_{-2}^2 \overline{P(x)} Q(-x) dx.$$

(i) Montrer que φ est une forme hermitienne. Est-elle définie positive ?

(ii) Ecrire la matrice de φ par rapport à la base = $(1, X, X^2)$ de E_2 .