Université de Bourgogne Département de mathématiques UFR Sciences et Techniques Licence 3

Analyse fonctionnelle

EXAMEN TERMINAL

Mai 2025

Durée: 3h

Exercice 1. (TD)

1. Soit $(X, \|\cdot\|)$ un espace vectoriel normé. Montrer que $(X, \|\cdot\|)$ est un espace de Banach si et seulement si pour toute suite $(x_n) \subset X$ telle que $\sum \|x_n\| < \infty$, la série $\sum x_n$ converge dans X.

2. Soit E un espace de Banach, F un evn et $T: E \to F$ une application linéaire continue et surjective tels que : il existe une constante C>0 vérifiant pour tout $y\in F$ il existe $x\in E$ tel que y=T(x) et $\|x\|\leq C\|y\|$. Montrer que F est un espace de Banach.

Exercice 2. (Séries de Fourier) Soit f une fonction 2π -périodique, impaire, définie par f(x) = 1 sur $]0, \pi[$;et $f(n\pi) = 0$ pour $n \in \mathbb{Z}$.

- 1. Dessiner le graphe de f sur une période.
- 2. Calculer les coefficients de Fourier a_n et b_n de f.
- 3. En déduire la série de Fourier de f qu'on notera S(f).
- 4. Montrer que pour tout $x \in \mathbb{R}$, f(x) = S(f)(x).
- 5. Montrer que $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)} = \frac{\pi}{4}$.
- 6. Montrer que $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$.

(Indication : penser à la formule de Parseval)

7. En déduire que $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ et que $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}$.

(Indication : on pourra décomposer la somme sur les nombres pairs et les impairs)

Exercice 3. (Espaces L^p) Soit f une fonction définie de \mathbb{R}^2 dans \mathbb{R} par

$$f(x,y) = \frac{1}{x^2 + y^2} \mathbf{1}_{[0,1]}(x^2 + y^2).$$

- 1. Montrer que $f \notin L^1(]0,1[\times]0,1[,\lambda)$ où λ est la mesure de Lebesgue. (Indication : on pourra utiliser un changement de variable en coordonnées polaires)
- 2. Montrer que $\sqrt{f} \in L^1(]0, 1[\times]0, 1[, \lambda)$ et calculer $||\sqrt{f}||_1$.
- 3. En déduire que $L^1(]0,1[\times]0,1[,\lambda)$ n'est pas inclus dans $L^2(]0,1[\times]0,1[,\lambda)$. Est-ce que $L^2(]0,1[\times]0,1[,\lambda)$ inclus dans $L^1(]0,1[\times]0,1[,\lambda)$?

Exercice 4. (Ascoli) On considère l'espace de Banach $E := (\mathcal{C}([0,1],\mathbb{R}), \|\cdot\|_{\infty})$. Soit $F \subset E$ un s.e.v fermé tel que tous les éléments de F sont de classe C^1 .

- 1. (a) Rappelez l'énoncé des théorèmes d'Ascoli et de graphe fermé.
 - (b) Montrer que l'application $T \colon F \to E$ définie par T(f) = f' est continue.
 - (c) En déduire que la boule unité de F est uniformément équicontinue (c-à-d que pour tout $\epsilon > 0$ il existe $\eta > 0$ tel que pour tout $f \in B(0,1) \cap F$ et tout $x,y \in [0,1], |x-y| < \eta$ implique que $|f(x) f(y)| < \epsilon$).
 - (d) Montrer que F est de dimension finie.
- 2. On rappelle que $C_b([0, +\infty[, \mathbb{R}), 1])$ est un espace de Banach.

On considère la suite de fonctions $(f_n)_{n\geq 1}$ définie sur $[0,+\infty[$ par $f_n(t)=\cos\sqrt{t+(2n\pi)^2}$.

- (a) Montrez que pour tous a, b > 0, $\sqrt{a+b} \sqrt{b} \le \frac{2}{2\sqrt{b}}$. Indication : On pourra utiliser le théorème des accroissements finis.
- (b) Montrer que pour tout $t, s \ge 0$ et $n \ge 1$, on a

$$|f_n(t) - f_n(s)| \le \frac{1}{4n\pi} |s - t|.$$

- (c) En déduire que la suite $(f_n)_{n\geq 1}$ est équicontinue et tend simplement vers 1.
- (d) Montrez qu'elle ne converge pas uniformément vers 1. Indication : On déterminera t_n tel que $f_n(t_n) = -1$.
- (e) L'ensemble $\mathcal{A} = \{f_n : n \geq 1\}$ est-il compact dans $\mathcal{C}_b([0, +\infty[, \mathbb{R})])$?