Rattrapage - 3h

Aucun document ou calculatrice n'est autorisé. Justifier vos affirmations. Une attention particulière sera portée à la rédaction.

Exercice 1.

Soit H un espace de Hilbert sur $\mathbb R$ muni d'un produit scalaire $\langle \cdot, \cdot \rangle$ et de la norme associée $\| \cdot \|$. Soit $a \in H \setminus \{0\}$ et $b \in \mathbb R$. On définit $B := \{x \in H \; ; \; \|x\| \le 1\}$ et $C := \{x \in H \; ; \; \langle x, a \rangle \le b\}$.

- 1) Si $x \in H$, calculer les projections $p_B(x)$ et $p_C(x)$ sur B et C respectivement. On prendra bien soin de justifier la réponse en utilisant une des caractérisations de la projection mais il n'est pas nécessaire de montrer que B et C sont des convexes fermés non-vides.
- 2) Trouver une condition nécessaire et suffisante sur a et b pour que $B \cap C = \emptyset$.
- 3) Trouver $x \in B$ et $y \in C$ tels que ||x y|| = d(B, C), où $d(B, C) := \inf\{||x' y'||; x' \in B, y' \in C\}$. En déduire la valeur de d(B, C).

Exercice 2.

Calculer

$$\inf_{a,b\in\mathbb{R}} \int_{-\pi}^{\pi} (\sin(x) + a + bx^2)^2 dx.$$

Exercice 3.

- 1) Soit $(X, \|\cdot\|)$ un espace vectoriel normé. Montrer que $(X, \|\cdot\|)$ est un espace de Banach si et seulement si pour toute suite $(x_n) \subset X$ telle que $\sum \|x_n\| < \infty$, la série $\sum x_n$ converge dans X.
- 2) Soit E un espace de Banach, F un evn et $T: E \to F$ une application linéaire continue et surjective tels que : il existe une constante C > 0 vérifiant pour tout $y \in F$ il existe $x \in E$ tel que y = T(x) et $||x|| \le C||y||$. Montrer que F est un espace de Banach.

Exercice 4.

On considère l'espace de Banach $E := (C^0([0,1],\mathbb{R}), \|\cdot\|_{\infty})$. Soit $F \subset E$ un s.e.v fermé tel que tous les éléments de F sont de classe C^1 .

- 1) Rappelez l'énoncé des théorèmes d'Ascoli et de graphe fermé.
- 2) Montrer que l'application $T: F \to E$ définie par T(f) = f' est continue.
- 3) En déduire que la boule unité de F est uniformément équicontinue (c'est-à-dire que pour tout $\epsilon > 0$ il existe $\eta > 0$ tel que pour tout $f \in B(0,1) \cap F$ et tout $x,y \in [0,1], |x-y| < \eta$ implique $|f(x) f(y)| < \epsilon$).
- 4) Montrer que F est de dimension finie.

Exercice 5.

Soit f la fonction impaire et 2π -périodique définie par

$$f(x) = \frac{\pi - x}{2}$$
 si $x \in]0, \pi[$.

Déterminer les séries de Fourier de f et étudier sa convergence.