CALCUL DIFFERENTIEL - SESSION DE RATTRAPAGE Durée : 2h

I

Déterminer les points critiques de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto x(x+1)^2 - y^2$, et préciser la nature de chacun d'eux.

II

Soit
$$C = \left\{ \left(\frac{3t}{t^3 + 1}, \frac{3t^2}{t^3 + 1} \right), t \in]-1, +\infty[\right\}.$$

- 1. En quels points l'ensemble \mathcal{C} n'est-il pas une sous-variété de dimension 1 de \mathbb{R}^2 ?
- 2. En tous les autres points de C, déterminer la droite tangente à C.

III

Pour $n \in \mathbb{N} \setminus \{0\}$, on désigne par $\mathcal{M}_n(\mathbb{R})$ l'espace des matrices carrées réelles de taille n et par $\mathrm{Id}_n \in \mathcal{M}_n(\mathbb{R})$ la matrice identité de taille n.

- 1. Soit $F: \mathbb{R} \times \mathcal{M}_n(\mathbb{R}) : (\lambda, A) \mapsto \det(A \lambda \mathrm{Id}_n)$. Montrer que F est de classe \mathcal{C}^1 .
- 2. Un nombre $\lambda_0 \in \mathbb{R}$ est une valeur propre simple d'une matrice $A_0 \in \mathcal{M}_n(\mathbb{R})$ si $F(\lambda_0, A_0) = 0$ et $\frac{\partial F}{\partial \lambda}(\lambda_0, A_0) \neq 0$. Dans ce cas, montrer qu'il existe un voisinage ouvert V de A_0 et une fonction $\varphi: V \to \mathbb{R}$ de classe \mathcal{C}^1 telle que, pour toute matrice $B \in V$, $\varphi(B)$ soit une valeur propre simple de B.
- 3. Soit $U \subseteq \mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices ayant n valeurs propres deux à deux distinctes. Montrer que U est un sous-ensemble ouvert de $\mathcal{M}_n(\mathbb{R})$.
- 4. Pour $A \in U$, soient $\lambda_1(A) < \cdots < \lambda_n(A)$ les n valeurs propres de A rangées par ordre croissant. Montrer que les applications λ_i , $i = 1, \ldots, n$, sont de classe \mathcal{C}^1 sur U.