CALCUL DIFFÉRENTIEL - EXAMEN (1h30)

T

On considère l'ensemble $\mathcal{S} \subset \mathbb{R}^3$ défini par $\mathcal{S} = \{(x, y, z) \in \mathbb{R}^3 : z - y - x^3 + x^2 = 0\}.$

- 1. Montrer que S est en tout point une sous-variété de dimension 2 de \mathbb{R}^3 .
- 2. Montrer que, pour tout $t \in \mathbb{R}$, la droite \mathcal{D}_t passant par le point $M(t) = (t, t^2, t^3)$ et dirigée par le vecteur u = (0, 1, 1) est contenue dans \mathcal{S} .
- 3. Soit $t \in \mathbb{R}$. Montrer que les plans tangents à S en tous les points de la droite \mathcal{D}_t sont les mêmes.

II

Soient p, q deux nombres réels strictement positifs, et soit $f:]-\infty, 1] \times]-\infty, 1] \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} (1-x)^p (1-y)^q & \text{si } (x,y) \in]-\infty, 1[\times]-\infty, 1[\\ 0 & \text{si } x = 1 \text{ ou } y = 1. \end{cases}$$

- 1. Trouver les extrema locaux de f sur $]-\infty, 1[\times]-\infty, 1[$ soumis à la contrainte x+y=1, ainsi que la valeur de f en ces points.
- 2. En déduire les extrema de f sur $]-\infty,1] \times]-\infty,1]$ soumis à la contrainte x+y=1, et la nature de ces extrema.

III

On considère l'application $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$, définie par $\varphi(x,y) = \left(\sin\left(\frac{y}{2}\right) - x, \sin\left(\frac{x}{2}\right) - y\right)$.

- 1. Montrer que φ est en tout point un difféomorphisme local.
- 2. En déduire que $\varphi(\mathbb{R}^2)$ est un ensemble ouvert de \mathbb{R}^2 .
- 3. Montrer que pour tous réels u_1 et u_2 avec $u_1 < u_2$, il existe $u \in]u_1, u_2[$ tel que

$$\sin\left(\frac{u_2}{2}\right) - \sin\left(\frac{u_1}{2}\right) = \frac{1}{2}\left(u_2 - u_1\right)\cos\left(\frac{u}{2}\right).$$

En déduire que φ est injective.