Contrôle Continu Final d'Atomistique (2h) Chim1A

Calculatrice autorisée.

Il sera tenu compte de la rédaction et de la présentation.

Toute réponse doit être convenablement justifiée.

DONNEES:

Eléments dans la première ligne du tableau périodique : H ; He

Eléments dans la deuxième ligne du tableau périodique : Li ; Be ; B ; C ; N ; O ; F ; Ne

Famille des gaz rares selon Z croissant :

He Ne Ar Kr Xe Rn

Constantes:

$h = 6,62.10^{-34} \text{ J.s}$	$1eV = 1,6.10^{-19} J$	$N_A = 6,02.10^{23} \text{mol}^{-1}$
$c = 3.10^8 \text{ m.s}^{-1}$	$e = 1,6.10^{-19} C$	$m_{e-} = 9,11.10^{-31} \text{ kg}$

Tableau résumant les coefficients d'écran de SLATER :

		The Section		Etat	de l'élec	tron i			
		1s	2s, 2p	3s, 3p	3d	4s, 4p	4d	4f	5s, 5p
	1s	0,31							
	2s, 2p	0,85	0,35						
Etat de	3s, 3p	1	0,85	0,35					
l'électron	3d	1	1	1	0,35				
j	4s, 4p	1	1	0,85	0,85	0,35			
	4d	1	1	1	1	1	0,35		
	4f	1	1	1	1	1	1	0,35	
	5s, 5p	1	1	1	1	0,85	0,85	0,85	0,35

Tableau résumant les énergies des orbitales atomiques de l'oxygène (O) en eV pour les niveaux n = 1 et n = 2:

1 s 2 s 2 p - 560 - 33,7 -17,1

Numéros atomiques de quelques éléments :

élément	N	О	P	Cl
Z	7	8	15	17

Electronégativités des atomes phosphore, azote, oxygène et chlore :

Elément	P	N	Cl	О	
χ	2,19	3,04	3,16	3,44	

EXERCICE I:

On considère les systèmes suivants :

- -un électron de vitesse $v = (100 \pm 1).10^6 \text{ km.h}^{-1}$
- -une balle de ping-pong de masse 2,7 g et se déplaçant à la vitesse $v = (100 \pm 1) \text{ km.h}^{-1}$
- **I.1.** En appliquant la relation de De Broglie et le principe d'incertitude d'Heisenberg, calculer la longueur d'onde pour chacun des 2 systèmes et l'erreur commise sur leur position.
- I.2. Discuter la signification des résultats.

EXERCICE II:

Une espèce hydrogénoïde absorbe dans son état fondamental un rayonnement. Son énergie d'ionisation est égale à 340 eV.

- II.1. De quelle espèce hydrogénoïde s'agit-il?
- II.2. Calculer la longueur d'onde (en nm) de la radiation qui permettrait d'arracher l'électron se trouvant sur le niveau fondamental.
- II.3. Calculer l'énergie de cet électron s'il est dans son premier puis son second état d'excitation (n=2 et n=3).
- II.4. Montrer que l'absorption d'un photon de nombre d'onde $\sigma = 2,054.10^8$ m⁻¹ par cette espèce hydrogénoïde à l'état fondamental est possible. Préciser le niveau énergétique de l'électron résultant de cette absorption.

EXERCICE III:

Soient les éléments suivants : 17Cl, 38Sr, 42Mo

- III.1. En suivant la règle de Klechkowski, donner la configuration électronique dans l'état fondamental de chaque élément en vous servant de celle des gaz rares.
- III.2. Donner le nombre d'électrons célibataires pour chacun des éléments.
- III.3. L'élément 42Mo possède en fait 6 électrons célibataires. Expliquer pourquoi.
- III.4. Donner un quadruplet de nombres quantiques possibles pour le(les) électron(s) célibataire(s) de Cl.
- III.5. Expliquer la position (numéro de ligne et numéro de colonne) de chaque élément dans le tableau périodique. Dans quel bloc se trouve chacun de ces éléments ?
- III.6. Classer ces éléments par ordre croissant de leur rayon atomique en justifiant votre réponse.
- III.7. Classer ces éléments par ordre décroissant de leur énergie de première ionisation en justifiant votre réponse.
- III.8. En utilisant les règles de Slater, calculer l'énergie de première ionisation du chlore en faisant le moins de calculs possible.

EXERCICE IV:

- IV.1. Construire le diagramme d'énergie des orbitales moléculaires de la molécule O₂ (diagramme sans interactions s-p). Indiquer clairement sur le diagramme les types et les énergies des orbitales atomiques utilisées, ainsi que le nom des orbitales moléculaires formées.
- IV.2. En justifiant votre réponse, expliquer si la molécule O2 est paramagnétique ou diamagnétique.
- IV.3. Ecrire la configuration électronique de valence de la molécule O₂ et calculer son indice de liaison.
- IV.4. La molécule O_2 peut donner un cation (O_2^+) et un anion (O_2^-) . Quand on mesure expérimentalement les longueurs de liaisons (d) on trouve : d $(O_2^-) > d$ $(O_2) > d$ (O_2^+) . Justifier ce résultat.

EXERCICE V:

- V.1. Pour les molécules et ions suivants POCl₃, ClO₃-, ClNO (l'atome central est en gras) :
 - V.1.1. Proposer des schémas de LEWIS en expliquant les règles qui y conduisent. Détailler les calculs effectués et la signification des grandeurs calculées.
 - V.1.2. Déduire la géométrie moléculaire de chaque édifice en appliquant la théorie V.S.E.P.R et la dessiner en perspective de Cram.
- V.2. Donner le(les) axe(s) et plan(s) de symétrie de la molécule ClO₃ et les représenter sur la molécule.
- V.3. Tracer les moments dipolaires des liaisons, puis le moment dipolaire total des édifices POCl₃ et ClNO. Préciser si ces édifices sont polaires ou apolaires.