Licence 1 de Sciences et Techniques

Contrôle continu final de thermochimie (2h00) Chim 2A

Calculatrice autorisée

Il sera tenu compte de la rédaction et de la présentation

Toute réponse doit être convenablement justifiée

Données :

Entropies absolues molaires standards des corps purs à 25°C

corps pur	UO _{3(s)}	H _{2(g)}	UO _{2(s)}	H ₂ O _(g)	HF _(g)	UF _{4(s)}	U _(s)
S°(J.K ⁻¹ .mol ⁻¹)	98,6	130,6	77,8	188,8	173,5	151,1	50,3

Constante des gaz parfaits : $R = 8,31 \text{ J.K}^{-1}.\text{mol}^{-1}$

Pour la réaction (1) à 25°C: $\Delta_r H^{\circ}_{25}(1) = -108 \text{ kJ.mol}^{-1}$

Masse molaire de $UO_{2(s)}$: 270 g.mol⁻¹

Températures de changement d'état : $T_{fusion}(Mg) = 651$ °C et $T_{ébullition}(Mg) = 1107$ °C

Métallurgie

On peut représenter de manière simplifiée le procédé d'élaboration de l'uranium dans un réacteur par les trois réactions suivantes, réalisées chacune sous une pression de 1 bar.

(1)
$$UO_{3(s)} + H_{2(g)} \hookrightarrow UO_{2(s)} + H_2O_{(g)}$$

(2)
$$UO_{2(s)} + 4 HF_{(g)} \leftrightarrows UF_{4(s)} + 2 H_2O_{(g)}$$

(3)
$$UF_{4(s)} + 2 Mg \qquad \leftrightarrows \qquad U_{(s)} \qquad + 2 MgF_{2(s)}$$

On admettra dans la suite que les variations d'entropie molaire standard et d'enthalpie molaire standard des réactions étudiées sont constantes dans les domaines de températures considérés.

1. La réaction de $UO_{2(s)}$ avec $HF_{(g)}$ dégage de l'eau gazeuse et l'on pourrait craindre que l'accumulation de cette eau dans le réacteur ne favorise pas la réaction de $UO_{3(s)}$ avec $H_{2(g)}$. Expliquer pourquoi.

- 2. On étudie l'équilibre (1).
- **2.a.** Calculer la variation d'enthalpie libre molaire standard $\Delta_r G^{\circ}_{25}(1)$ de l'équilibre (1) à 25°C.
- **2.b.** En déduire la valeur de la constante d'équilibre $K_{25}(1)$ à 25°C. Conclure quant à l'avancement de la réaction dans le sens direct.
- **2.c.** Etablir l'expression de la variation d'enthalpie libre molaire standard $\Delta_r G^{\circ}_{T}(1)$ sous forme d'une fonction affine de la température T (T étant une température quelconque). Tracer l'allure de la courbe $\Delta_r G^{\circ}_{T}(1) = f(T)$ pour des températures comprises entre 0 K et 1000 K. Que déduire de la spontanéité de la réaction (1) ?
- **2.d.** A l'aide de la courbe tracée question **2.c** comparer $\Delta_r G^{\circ}_{T}(1)$ et $\Delta_r G^{\circ}_{25}(1)$ lorsque $T > 25^{\circ}C$ dans le réacteur. Comparer alors les constantes d'équilibre $K_T(1)$ et $K_{25}(1)$. La réaction (1) dans le sens direct est-elle toujours totale quand $T > 25^{\circ}C$?
- **3.** En 1949, Domange et Wohlhuter ont étudié l'équilibre (2) entre 200 °C et 600 °C (on considèrera que ces températures forment un petit intervalle de températures) et ont tracé la courbe $ln(K_T(2))$ en fonction de 1/T (en K^{-1}). Ils ont obtenu une droite dont la valeur de la pente est 16670.
- **3.a.** Rappeler la loi de Van't Hoff. En déduire la relation entre $ln(K_T(2))$ et 1/T.
- **3.b.** Expliquer pourquoi la valeur de la variation d'enthalpie molaire standard $\Delta_r H^{\circ}_{25}(2)$ vaut environ -138,5 kJ.mol⁻¹.
- **3.c.** La réaction (2) dans le sens direct est-elle exothermique ou endothermique ? Est-ce un critère favorable pour la spontanéité de la réaction ?
- **3.d.** Expliquer si la réaction (2) est favorisée dans le sens direct grâce à une élévation ou grâce à un abaissement de température.
- **3.e.** Calculer la variation d'entropie molaire standard $\Delta_r S^{\circ}_{25}(2)$ à 25°C. Pouvait-on prévoir le signe de $\Delta_r S^{\circ}_{25}(2)$? Est-ce un critère favorable pour la spontanéité de la réaction ?
- 4. On réalise la réaction (2) dans une enceinte initialement vide dans laquelle on introduit successivement :
 - une masse donnée d'UO_{2(s)}
 - HF_(g) sous pression (en l'absence de tout autre gaz)

L'enceinte est ensuite fermée et la pression évolue sous l'effet de la réaction, la température restant constante. Soit P_i la pression initiale d' $HF_{(g)}$ et x l'avancement de la réaction à un instant t.

On se place dans les conditions initiales suivantes :

température : 227 °C, pression : P_i = 1 bar, volume de l'enceinte : 8,30 m³ ; masse initiale d'UO_{2(s)} : 8,00 kg.

- 4.a. Calculer les quantités de matière initiales de HF(g) et d'UO_{2(s)}.
- **4.b.** Recopier puis compléter le tableau d'avancement suivant en indiquant les quantités de matière de chaque composé.

	UO _{2(s)}	+	4 HF _(g)	≒	UF _{4(s)}	+	2 H ₂ O _(g)	Total GAZ
x = 0 mol								
x ≠ 0 mol								
Pression								

- **4.c.** Ecrire l'expression littérale de la loi des gaz parfaits pour x = 0 mol puis pour $x \neq 0$ mol. En déduire la relation entre la pression totale P_T , l'avancement de la réaction x et la pression initiale P_i .
- **4.d.** Ecrire l'expression de la constante d'équilibre $K_{227}(2)$ en fonction des activités des composés puis en déduire son expression en fonction de l'avancement de la réaction x.
- **4.e.** On réalisera les calculs suivants en considérant que $K_{227}(2) = \frac{160000 \cdot x^2}{(200 4 \cdot x)^4}$. Dans les conditions expérimentales, on trouve que 140 moles de $HF_{(g)}$ sont dissociées quand l'équilibre est atteint. Calculer la valeur de la constante d'équilibre $K_{227}(2)$ à partir de la relation donnée. La réaction (2) est-elle totale dans le sens direct ? Et dans le sens indirect ?