

Contrôle terminal (Chim22) 1ère année de Licence

25 juin 2025 (durée : 1h00)

L'utilisation des calculettes est interdite. Les portables doivent être éteints et rangés.

Exercice 1: (barème indicatif: environ 9,5 pts)

La pyridine représentée ci-dessous peut être utilisée en tant que base de Lewis ou en tant que base de Bronsted. L'exercice qui suit tend à illustrer ces propos.

- 1.1. Donner une autre forme limite (de résonance) de la pyridine
- 1.2. Indiquer le degré d'hybridation des atomes de C et d'N au sein de cette molécule.
- 1.3. Représenter les orbitales p au sein de cette molécule. Dans quel type de liaison sont impliquées ces orbitales.
- 1.4. Comment est orienté le doublet non liant de l'N par rapport au plan de la pyridine. Justifier.

L'addition d'acide chlorhydrique sur la pyridine conduit à un sel.

- 1.5. Donner un schéma de Lewis de ce sel.
- 1.6. Indiquer le degré d'hybridation et la géométrie de l'atome d'N au sein de ce sel.
- 1.7. Indiquer la nature de la liaison entre l'anion chlorure et le cation pyridinium.

On s'intéresse désormais à la réactivité de la pyridine vis-à-vis de BF₃.

- 1.8. Donner la configuration électronique du bore et indiquer son nombre d'électrons de valence.
- 1.9. Donner un schéma de Lewis de BF₃. Indiquer la géométrie et le degré d'hybridation de l'atome de bore au sein de cette molécule.
- 1.10. Indiquer comment les liaisons B-F sont polarisées dans BF₃. Cette molécule possède-t-elle un moment dipolaire ? Justifier.
- 1.11. L'addition de BF₃ sur la pyridine conduit à un adduit. Donner à Schéma de Lewis de cet adduit et indiquer la géométrie et le degré d'hybridation de l'atome de bore au sein de cette molécule.

Exercice 2: (barème indicatif : environ 3 pts)

Indiquer les configurations électroniques du Fe, du Sc et des ions Mg²⁺ et H⁺

Exercice 3: (barème indicatif: environ 5,25 pts)

- 3.1 Représenter un schéma de Lewis des trois composés suivants : HCN, $CH_2=NCH_3$ et CH_2N_2
- 3.2 Indiquer la géométrie de l'atome de carbone et son état d'hybridation pour chacun de ces composés.
- 3.3 Préciser la nature σ et/ou π des liaisons CN dans ces composés.

Exercice 4: (Barème indicatif: environ 3 pts)

- 4.1 Représenter les deux formes limites possibles de la but-3-ène-2-one.
- 4.2 Indiquer quels effets (inductifs et/ou mésomères) a la fonction cétone au sein de cette molécule.
- 4.3 Indiquer selon vous quels sont les deux sites électrophiles sur cette molécule, justifier.

1H																	₂He
₃ Li	₄Be											5B	₆ C	$_{7}N$	O_8	₉ F	10Ne
11Na	12Mg											13AI	₁₄ Si	15P	₁₆ S	17CI	₁₈ Ar
₁₉ K	₂₀ Ca	21Sc	₂₂ Ti	$_{23}V$	24Cr	$_{25}Mn$	₂₆ Fe	₂₇ Co	$_{28}Ni$	₂₉ Cu	$_{30}Zn$	31Ga	$_{32}Ge$	33As	34Se	35Br	36Kr
$_{37}Rb$	38Sr	39Y	40Zr	41Nb	₄₂ Mo	43TC	44Ru	45Rh	46Pd	47Ag	48Cd	₄₉ ln	₅₀ Sn	51Sb	52Te	53	54 Xe
55 C S	56Ba	71Lu	72Hf	₇₃ Ta	$_{74}W$	75Re	76 O S	77 l r	78Pt	79Au	80Hg	81TI	82Pb	83Bi	84P0	85At	86Rn