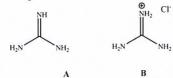


Contrôle terminal (Chim2B) 1ère année de Licence

16 mai 2025 (durée : 1h00)


L'utilisation des calculettes est interdite. Les portables doivent être éteints et rangés.

Exercice 1: (barème indicatif: 6 points)

- 1.1- Indiquer les configurations électroniques de l'yttrium (Y) et des ions Ag⁺ et Cl⁻.
- 1.2- Donner la représentation de Lewis des entités suivantes : CH₃, NH₄⁺, N₃.
- 1.3- Représenter les formes limites mésomères du butadiène.
- 1.4- Représenter les orbitales moléculaires σ liante et σ^* antiliante de la molécule d'hydrogène. Dans quelle orbitale sont situés les 2 électrons de la simple liaison H-H de la molécule de dihydrogène à l'état fondamental.

Exercice 2: (barème indicatif: 3,5 points)

La guanidine A ainsi qu'un sel B issu de A sont représentés ci-dessous :

- 2.1- Donner la configuration électronique de l'atome d'azote. Indiquer son nombre d'électrons de valence.
- 2.2- Préciser la géométrie et le mode d'hybridation de l'atome de carbone dans la guanidine A.
- 2.3- L'amide A réagit avec HCl pour donner le sel B. Représenter une autre forme limite de ce sel B. Quels effets électroniques a le groupement NH₂ sur la molécule.
- 2.4- Indiquer la nature de la liaison entre l'anion chlorure et le cation guanidinium au sein de B.

Exercice 3: (barème indicatif: 3 points)

- 3.1- Représenter en Lewis les deux formes mésomères du diazométhane (CH₂N₂).
- 3.2- Indiquer l'hybridation des atomes d'azote pour la forme mésomère du diazométhane présentant deux doubles liaisons.
- 3.3- Représenter les orbitales π résultant du recouvrement des orbitales p au sein de cette forme mésomère.

Exercice 4: (barème indicatif: 4,5 points; -0,5 points par affirmation fausse)

Un certain nombre d'affirmations sont listées ci-dessous. Sur votre copie, indiquer, sans justifier, le numéro suivi de la (ou les) lettres correspondante(s) aux affirmations justes (pour chaque « question » il peut y avoir plusieurs affirmations justes).

- 1) L'azote 14 (14N) est l'isotope stable de l'azote le plus abondant ; il possède : a) huit neutrons ; b) sept protons ; c) sept électrons
- 2) Le scandium 21Sc à l'état fondamental possède : a) 1 électrons dans 1 orbitales 3d; b) 1 électron dans l'orbitale 4s
- 3) Un atome neutre est plus gros que : a) son cation ; b) son dication ; c) son anion.
- 4) L'oxygène est plus électronégatif que : a) le fluor ; b) le bore ; c) le silicium
- 5) Le cuivre ⁶³Cu a : a) plus de protons que de neutrons ; b) plus de neutrons que d'électrons.
- 6) Le schéma de Lewis du nitrobenzène (PhNO₂) compte : a) 8 électrons π ; b) 12 électrons σ ; c) 4 électrons non liants.

Exercice 5: (barème indicatif: 3 points)

La triméthylphosphine (PMe₃) réagit avec le iodométhane (CH₃I) pour conduire à un sel de phosphonium. Donner une représentation de Lewis des trois molécules. Indiquer comment sont polarisées les liaisons dans le iodométhane. Identifier le nucléophile et l'électrophile dans cette réaction et indiquer à l'aide de flèches le mouvement d'électrons qui opère lors de cette réaction.

₁ H																	₂He
₃ Li	₄ Be											5B	₆ C	$_{7}N$	O_8	₉ F	10Ne
11Na	12Mg											13AI	₁₄ Si	15P	₁₆ S	17CI	18Ar
19K	₂₀ Ca	21SC	₂₂ Ti	$_{23}V$	24Cr	$_{25}Mn$	₂₆ Fe	₂₇ Co	$_{28}Ni$	₂₉ Cu	$_{30}Zn$	$_{31}Ga$	32Ge	33As	34Se	$_{35}Br$	$_{36}Kr$
37Rb	38Sr	39Y	$_{40}Zr$	$_{41}Nb$	₄₂ Mo	43Tc	44Ru	$_{45}Rh$	46Pd	47Ag	48Cd	₄₉ In	₅₀ Sn	51Sb	52Te	₅₃	54Xe
55Cs	56Ba	71Lu	72 H f	₇₃ Ta	$_{74}W$	75Re	76Os	77 lr	78Pt	₇₉ Au	80Hg	81TI	82Pb	₈₃ Bi	₈₄ Po	$_{85}At$	86Rn