Licence 1 de Sciences et Techniques

Rattrapage

Contrôle continu final de cinétique chimique (1h)

Calculatrice autorisée

Il sera tenu compte de la rédaction et de la présentation.

Toute réponse doit être convenablement justifiée, les formules retenues sont à démontrer.

Cinétique de décomposition d'une solution d'eau oxygénée

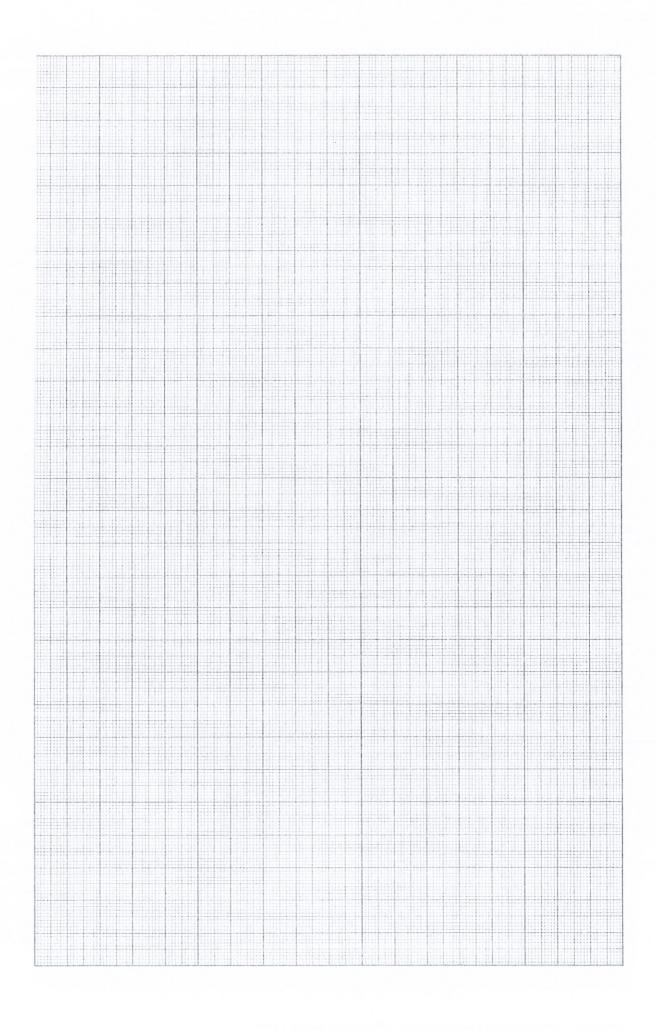
L'eau oxygénée (H_2O_2) utilisée notamment comme antiseptique, se décompose et produit un dégagement de dioxygène selon la réaction :

$$H_2O_{2(I)} \rightarrow H_2O_{(I)} + \frac{1}{2} O_{2(g)}$$

1- Etude de la réaction de décomposition de la solution d'eau oxygénée à 20°C

Une expérience est réalisée à 20° C avec une concentration initiale en eau oxygénée $[H_2O_2]_0=58$ mmol.L⁻¹. La vitesse de cette réaction peut être suivie en déterminant la concentration en eau oxygénée au cours du temps. On obtient les valeurs suivantes :

temps (min)	0	2	4	6	11	15	20	25
[H ₂ O ₂] _t (mmol.L ⁻¹)	58	53	47	41	34	26	21	17


- **1-a-** Donner l'expression de la vitesse instantanée de disparition de l'eau oxygénée en fonction de la dérivée de la concentration de l'eau oxygénée et du temps.
- **1-b-** La réaction est supposée d'ordre 1 par rapport à l'eau oxygénée. Donner l'expression de la vitesse de réaction en fonction de la constante de vitesse k et de la concentration en eau oxygénée $[H_2O_2]$.
- 1-c- Intégrer l'équation différentielle résultant des questions précédentes et retrouver la relation donnant l'évolution de la concentration en eau oxygénée en fonction du temps.
- **1-d-** Quel graphique doit-on tracer afin de déterminer la valeur de k ? Déterminer la valeur de k en précisant l'unité.
- 1-e- Rappeler la définition du temps de demi-réaction.
- 1-f- Sans aucun calcul, est-il possible de donner un ordre de grandeur du temps de demi-réaction pour la réaction de décomposition de l'eau oxygénée ?
- 1-g- Calculer sa valeur.

2- Catalyse de la réaction de décomposition de l'eau oxygénée à 20°C

- **2-a-** Donner l'expression de la constante de vitesse de la réaction en fonction de l'énergie d'activation E_a et de la température T.
- **2-b-** En présence d'une enzyme, l'énergie d'activation de la réaction de décomposition de l'eau oxygénée est $E_{a2} = 30 \text{ kJ.mol}^{-1}$ à la température de 20°C. En absence de cette enzyme, l'énergie d'activation de cette même réaction est $E_{a1} = 75 \text{ kJ.mol}^{-1}$ à la température de 20°C. Quel rôle joue cette enzyme pour cette réaction ?
- 2-c- Par quel facteur est multipliée la vitesse de la réaction lorsqu'on ajoute cette enzyme ?

Rappel: constante des gaz parfaits $R = 8,314 \text{ J.mol}^{-1}.\text{K}^{-1}$

A RENDRE AVEC LA COPIE D'EXAMEN

