UNIVERSITE BOURGOGNE EUROPE L3 Chimie

UE56 – Chimie Analytique et Structurale

Durée: 1 h 00 – (Documents non autorisés)

1.) Quelle est la technique d'analyse mise en œuvre dans la Figure 1 ? Rappeler les modes utilisés pour obtenir les informations rassemblées dans cette figure ? Ainsi, annoter la figure 1a) à partir des cartographies chimiques obtenues pour chaque élément.

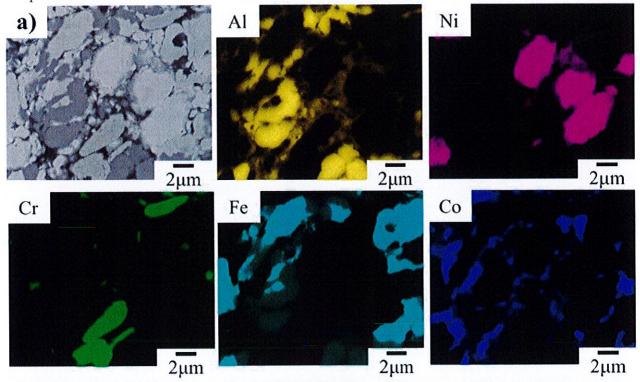
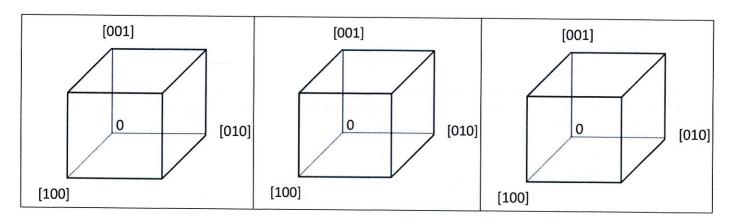


Figure 1 : Analyse d'un alliage métallique


2.) Tracer le spectre de fluorescence X attendu (seules les transitions $K\alpha$ seront représentées) en partant des informations de la figure 1 sachant qu'une source K_α de l'argent a été utilisée. Rappeler les sources d'excitation habituellement utilisées en Science des Matériaux pour conduire une analyse par fluorescence X.

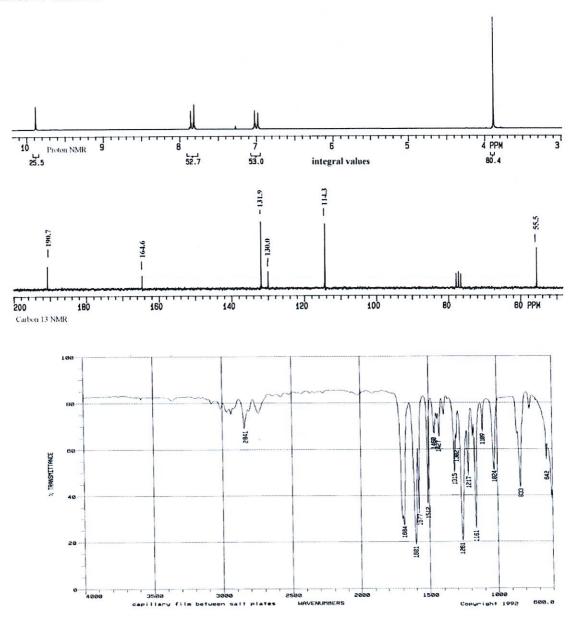
	•	F	eric	dic	Tab	le o	f Ele	eme	nts	and	X-r	ay I	Ener	gie	S		
1 1.01 H 0.0007 Hydrogen				1	-	0.00	nic weight										2 4.00 He 0.0002 Helium
3 6.94 Li 0.53 Lithium	4 9.01 Be ^{1.85} Berytlium Κα 0.108					Syn Elen	TELEVISION PROCESSES					5 10.81 B 2.34 Boron Kα. 0.183	6 12.01 C 2.27 Carbon Kα 0.277	7 14.01 N 0.001 Nitrogen Ka: 0.392	8 16.00 Ο 0.001 Oxygen Κα. 0.525	FIOCHAR	10 20.18 Ne 0.0009 Neon Ka 0.849
11 22.99 Na 0.97 Sodium Ka 1.040	12 24.31 Mg 1.74 Magnesium					Marketon Statement	ctral line					13 26.98 Al 2.70 Aluminium Ka: 1.486	14 28.09 Si 2.33 Silicon	15 30.97 P 1.82 Phosphorus	16 32.07 S 2.07	17 35.45 Cl 0.003 Chlorine Ka. 2.622	Argon
19 39.10 K 0.86 Potassium Ko. 3.314	20 40.08 Ca 1.54 Calcium Kox 3.692	21 44.96 Sc 2.99 Scandium Ko: 4.093	22 47.87 Ti 4.54 Titanium Κα 4.512	Ka 4.953	Chromium Ka 5.415	Ka 5.900	Ka 6.405	27 58.93 Co 8.86 Cobalt Ka 6.931 La 0.775	Nickel Ka 7.480	29 63.55 Cu 8.93 Copper Ka 8.046 La 0.928	Zinc	Camurit	32 72.64 Ge 5.32 Germanium Kα 9.886 Lα 1.188	33 74.92 As 5.78 Arsenic Ko: 10.543	34 78.96 Se 4.81 Selenium Ka. 11.224	35 79.90 Br 3.12 Bromine Ko. 11.924	36 83.80 Kr 0.004 Krypton Ka 12.648
37 85,47 Rb 1.53 Rubidium Ka: 13,396	Strontium Kg. 14.165	Yttrium Kg. 14.958	40 91.22 Zr 6.51 Zirconium Κα 15.775	Ka. 16.615	Kα 17.480	43 (98) TC 11.50 Technetium Kα 18.367	44 101.07 Ru 12.37 Ruthenium Κα 19.279	45 102.91 Rh 12.41 Rhodium Ka. 20.216	46 106.42 Pd 12.02 Palladium Kg, 21.177	47 107.87 Ag 10.50 Silver Ka 22.163	48 112.41 Cd 8.69 Cadmium Ka. 23.173		50 118.71 Sn 7.29 Tin Kα 25.271	51 121.76 Sb 6.69 Antimory Kα 26.359	52 127.60 Te 6.23 Tellunum Ka: 27.473	Lα 1.481 53 126.90 4.93 lodine Kα 28.612	Xenon Ka. 29,775
Cossum	Lα 1.806 56 137.33 Ba 3.59 Barium Kα 32.194	57 138.91 La 6.15	172 178.49 Hf 13.31 Hafnium Lα 7.899	Ta 16.65 Ta 16.65 Tantalum Lα 8.146 Mα 1.712	Tunnsten			77 192.22 Ir 22.65	Platinum	79 196.97 Au 19.28	Hg 13.53	Thallium	Lead	83 208.98 Bi 9.81 Bismuth La 10.839	Polonium	85 (210) At 7.00 Astatine Lα 11.427 Μα 2.577	86 (222) Rn 0.01 Radon Lo. 11.727

- 3.) En complément de l'analyse chimique élémentaire, une analyse des phases par diffraction des rayons X a été menée sur ce matériau. Trois phases ont été identifiées :
 - ☐ Une phase notée A de réseau orthorhombique centré, rappeler la définition d'une structure cristalline orthorhombique ainsi que les réseaux susceptibles d'être présents.
 - ☐ Une phase B de réseau cubique à faces centrées avec une masse volumique de 10,68g/cm³ et une masse molaire de 210,5g/mol (N_A=6,0210²³mol⁻¹). Déterminer son paramètre de maille puis retrouver dans le tableau ci-dessous les 5 premières raies associées à cette phase.
 - ☐ Une phase C de structure cubique. A partir des enregistrements rassemblés dans le tableau ci-dessous, déterminer le réseau de la phase C, calculer son paramètre de maille et sa masse volumique (Mc=92,90g/mol).

Distances en Å	Phases (A, B ou C)	Plans
2,932		
2,539		
2,334		West the second
2,21	A	
1,795		
1,76	A	
1,65		
1,5325		
1,466		
1,347		
1,244	A	
1,166		Charles and Market Annual Control of the
1,043		
0,998	A	
0,9525		The Appendix Season Addition of Records
0,882		

4.) Après avoir déterminé le réseau de la phase C, représenter cette maille ainsi que les plans (211) et (202). Calculer la densité surfacique du plan (011).

5.) Enfin, rappeler les causes qui conduisent à un élargissement d'une raie de diffraction des rayons X?


UNIVERSITE BOURGOGNE EUROPE U.F.R. Sciences et Techniques LICENCE DE CHIMIE

Année : 2024-2025 24 Juin 2025

EPREUVE Chimie Analytique et Structurale (durée : 1h)

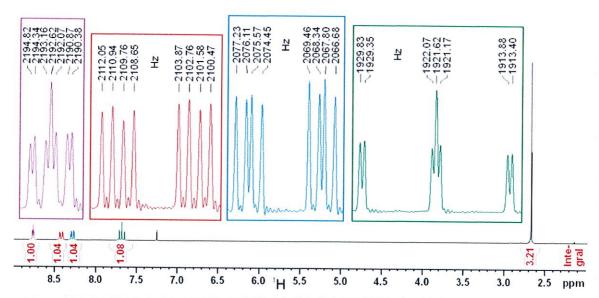
Problème 1

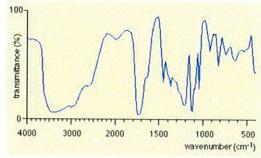
Les spectres de RMN ¹H, ¹³C, et infra-rouge d'un composé A de formule brute C₈H₈O₂ sont donnés ci-dessous.

En vous basant sur l'analyse de ces spectres, déterminer la formule de **A** et attribuer les signaux des spectres RMN ¹H et¹³C aux différents noyaux de **A**.

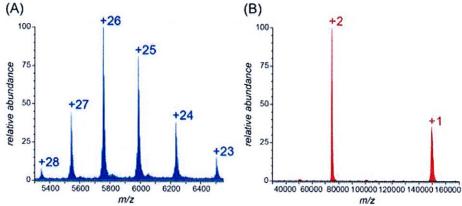
Problème 2

Le spectre de RMN 1 H (enregistré à 250 MHz dans CDCl₃) d'un composé $\bf B$ de formule brute C₈H₇NO₃ est représenté sur la Figure 2.




Figure 2 : Spectre RMN ¹H (250 MHz, CDCl₃) du composé B.

- 1) Proposer une structure pour le composé B.
- 2) Attribuer les différents signaux du spectre RMN ¹H aux différents noyaux ¹H du composé B. <u>Présenter les résultats de manière claire sous forme d'un tableau faisant apparaître tous les paramètres</u> (déplacements chimiques, intégration, constantes de couplage). Vous pourrez notamment vous aider pour l'attribution de la table RMN 4.


Problème 3

Répondre aux questions suivantes en justifiant brièvement.

1) Le spectre infra-rouge ci-dessous correspond-il : i) à un ester, ii) un acide carboxylique ?

- 2) Lesquelles de ces affirmations au sujet de la chromatographie en phase gazeuse est vraie ? fausse ?
 - a) La résolution du chromatogramme peut être améliorée en augmentant la longueur de la colonne.
 - b) Contrairement à la chromatographie en phase liquide, la qualité de l'analyse ne dépend pas de la vitesse de la phase mobile.
 - c) L'utilisation d'une colonne capillaire améliore très significativement l'efficacité de l'analyse.
 - a) Le coefficient de diffusion longitudinale dans l'équation de Van Deemter est plus grand en chromatographie en phase gazeuse qu'en chromatographie en phase liquide.
- 3) Deux modes d'ionisation ont été utilisés pour enregistrer le spectre de masse d'un anticorps monoclonal : Electrospray (ESI) ou MALDI.

- a) Que signifie le terme MALDI?
- b) Lequel des spectres (A) ou (B) correspond au mode d'ionisation i) ESI, ii) MALDI?
- c) Quel est (environ) le poids moléculaire (en Da) de l'anticorps ?
- d) Aurait-on pu utiliser l'impact électronique comme mode d'ionisation pour analyser cette molécule ?