UNIVERSITE DE BOURGOGNE LICENCE DE CHIMIE

UE56 - Chimie Analytique et Structurale

Durée: 1 h 00 - (Documents non autorisés)

Analyse chimique élémentaire par fluorescence X (4 pts)

- 1.) Quelles sont les sources utilisées en fluorescence X et rappeler brièvement le principe de la fluorescence X?
- 2.) Le spectre représenté sur la figure 1 correspond à l'analyse d'un composé inconnu par fluorescence X. Déterminer, à l'aide des données du tableau 1, les éléments présents en indiquant leurs transitions associées.

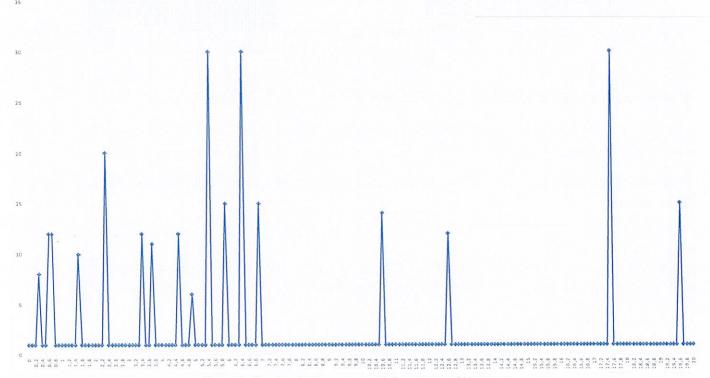
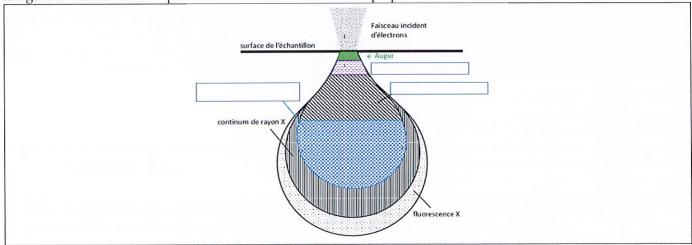
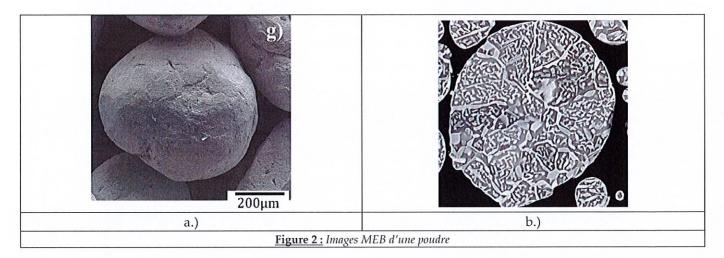



Figure 1 : Spectre de Fluorescence X d'un composé inconnue


Analyse morphologique au microscope électronique à balayage (MEB) (4 pts)

1.) L'interaction électrons/matière au sein d'un MEB conduit à la formation d'une poire, compléter les cases vides de la figure ci-dessous en indiquant les différentes informations qui peuvent être déduites.

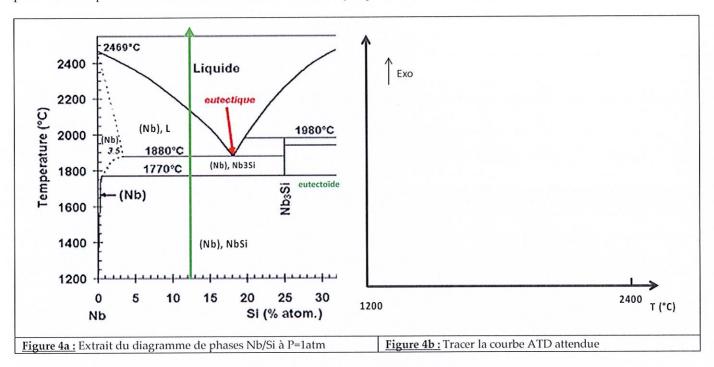
Nom Prénom:

- 2.) Les images de la Figure 2 ont été obtenues en utilisant deux modes spécifiques, préciser lesquels.
- 3.) Commenter alors les images observées sur la figure 2.

Analyse des phases par diffraction des rayons X (10 pts).

L'analyse par diffraction des rayons X (DRX) d'une poudre inconnue révèle la présence de trois phases différentes. A partir du relevé de la figure 3a :

- 1.) Trouver les raies de DRX appartenant à <u>la phase A</u> qui possède un réseau cubique primitif et un paramètre de maille de 2,86 10⁻¹⁰m.
- 2.) Identifier les raies appartenant à la **solution solide de** <u>la phase B</u> **contenant un élément X**, déterminer son réseau et son paramètre de maille.


A partir de la Figure 3b, retrouver la quantité d'élément X en solution solide dans le réseau de B puis calculer la masse volumique de cette solution solide (MB=100g/mol et Mx=50g/mol).

3.) Retrouver les deux raies de DRX restantes associées à <u>la phase C</u>.

Distance (10 ⁻¹⁰ m)	Phase	(hkl)			
2,86					
2,588					
2,022			3.70 -		
2,009		1			
1,8296			3.68 -		
1,6512					
1,494			7 Tattice barameter a 3.66 - 1.00 Tattice barameter a 3.64 - 1		
1,430			ara ara		
1,294] g		
1,279] ig 3.64 -		
1,1675					
1,157			3.62 -		
1,0565					
1,011			2,60		
1,002			3.60 0 5 10		
0,978			Atomic fraction $x_{\mathbf{x}}/\%$		
0,953					
Figure 3a : Relevé des distances réticulaires issues de			<u>Figure 3b</u> : Évolution du paramètre de maille de la solution		
l'enregistrement DRX			solide de B en fonction de la fraction atomique de X		

Analyse Thermique Différentielle (2 pts)

1.) A partir du diagramme de phase Nb/Si présenté figure 4a, tracer l'analyse thermique différentielle (ATD) attendue pour une composition à 12,5% at. de silicium de 1200° C jusqu'à 2400° C sur la figure 4b.

Eléments	K _α (Kev)	Kβ(Kev)	L _α (Kev)	L _β (Kev)	M _α (Kev)
С	0,28				
0	0,53				
Mg	1,25				
Al	1,5				
Si	1,7				
Ca	3,7				
Ti	4,5	4,9			
V	4,95	5,5	0,5		
Cr	5,4	6,0	0,6		
Mn	5,9	6,5	0,65		
Fe	6,4	6,9	0,7		
Со	6,9	7,7	0,8		
Ni	7,5	8,3	0,9		
Cu	8,0	8,9	1,0		
Zn	8,7	9,6	1,0		
Y	14,9	16,7	2,0		
Zr	15,8	17,7	2,05		
Nb	16,6	18,6	2,15		
Мо	17,5	19,6	2,3		
Ag	22,2	24,9	3,0	3,2	
Sn	25,2	28,5	3,4	3,7	
Ba	32,2	36,4	4,5	4,8	
La	33,4	37,8	4,65	5,05	
Hf	55,8	63,25	7,9	9,0	1,65
Та	57,55	65,2	8,15	9,35	1,7
W	59,3	67,25	8,4	9,7	1,8
Pt	66,8	75,75	9,5	11,05	2,05
Au	68,8	78,00	9,7	11,45	2,15
Pb	74,95	84,9	10,6	12,6	2,3

 $\underline{Tableau\ 1}$: Transitions K α , K β , L α , L β et M α de quelques éléments

UNIVERSITE DE BOURGOGNE U.F.R. Sciences et Techniques LICENCE DE CHIMIE

Année : 2024-2025 7 Janvier 2025

EPREUVE Chimie Analytique et Structurale (durée : 1h)

Problème 1

Les spectres de RMN ¹H, ¹³C et infra-rouge d'un composé A de formule brute C₄H₈O, sont représentés sur les Figures 1a à 1c.

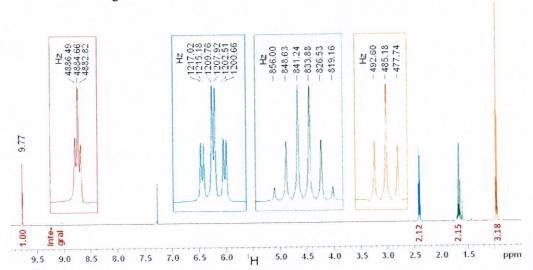


Figure 1a: Spectre RMN ¹H (CDCl₃, 500 MHz) du composé A et agrandissements de certains signaux

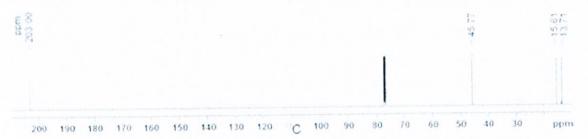


Figure 1b: Spectre RMN ¹³C { ¹H} (CDCl₃, 125 MHz) du composé A

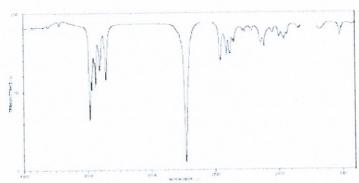


Figure 1c: Spectre Infra-rouge du composé A

- 1) Proposer une structure pour le composé A et attribuer les signaux des spectres RMN aux différents noyaux, en vous basant sur une analyse des spectres. Présenter le spectre RMN ¹H sous forme d'un tableau faisant apparaître tous les paramètres (déplacements chimiques, intégration, multiplicité, constantes de couplage).
- 2) Les spectres de RMN ¹H (500 MHz) et ¹³C (125 MHz) ont-ils été enregistrés sur le même appareil (on rappelle que la constante gyromagnétique γ du ¹H est 4 fois supérieure à celle du ¹³C). Justifier votre réponse en donnant l'équation reliant la fréquence de résonance à la constante gyromagnétique et au champ magnétique.
- 3) Le signal à δ = 77.7 ppm sur le spectre 13 C est un triplet d'intensité 1/1/1 correspondant au solvant CDCl₃. Expliquer cette multiplicité ($I_D = 1$).

Problème 2

La formule et le spectre de RMN 1 H (CDCl $_3$, 300 MHz) d'un composé de formule brute C_8H_7ClO sont donnés ci-dessous (Figure 2a).

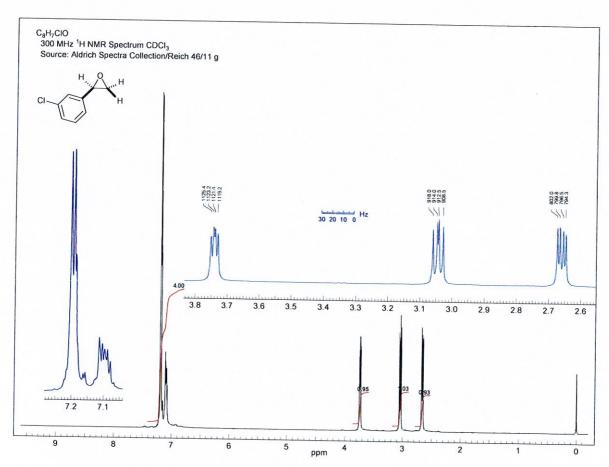
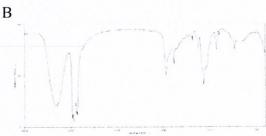


Figure 2a : Spectre de RMN ¹H (CDCl₃, 300 MHz) du composé de formule C₈H₇ClO

- 1) Présenter les données sous forme d'un tableau faisant apparaître tous les paramètres pour les signaux situés entre 2,6 et 3,8 ppm (déplacements chimiques, intégration, multiplicité, constantes de couplage).
- 2) En vous aidant de la table RMN6 (constantes de couplage), attribuer les signaux situés entre 2,6 et 3,8 ppm.


Problème 3

1) Indiquer la(les) vraie(s) affirmation(s):

Une colonne chromatographique est d'autant plus efficace que :

- a. La hauteur équivalente à un plateau théorique est grande
- b. Le nombre de plateaux théoriques est grand
- c. La hauteur équivalente à un plateau théorique est petite
- d. Le nombre de plateaux théoriques est petit
- 2) Indiquer si les affirmations suivantes sont vraies ou fausses (Justifier brièvement) :
 - a. La technique « Electrospray » est un mode d'ionisation particulièrement adapté au couplage avec la chromatographie en phase gazeuse
 - b. La technique « MALDI » est un mode d'ionisation dur générant des fragments
 - c. Le quadripôle est un analyseur communément utilisé pour séparer des ions issus de molécules de faible poids moléculaire
- 3) En spectroscopie UV-Visible, quelle est l'unité pour l'absorbance A (Justifier) ?
 - a. L. mol-1. cm-1
 - b. g. mol-1. cm-1
 - c. Mol. L-1. cm-1
 - d. Aucune des 3 précédentes
- 4) Lequel des spectres infra-rouge (A ou B) correspond à i) l'hexan-1-ol, ii) l'hex-1-ène ? (Justifier brièvement)

A THE TOTAL PROPERTY OF THE PARTY OF THE PAR

