UNIVERSITE BOURGOGNE EUROPE

U.F.R. Sciences et Techniques

Filière : Licence de Chimie

et Licence de Physique, parcours Physique-chimie

Session 1

EPREUVE : Cinétique (sans document) Durée : 2 h 1/2

Année 2024-2025

Date: 19 mai 2025

Remarques préalables :	
Les calculatrices sont autorisées.	
Pour l'ensemble des questions, vous justifierez vos réponses.	

I-Réaction de la soude sur l'iodure d'éthyle (/9)

En partant de concentrations initiales identiques C_0 en dérivé halogéné et en hydroxyde de sodium, les temps de demi-réaction, mesurés à $T_1 = 298$ K, pour différentes valeurs de C_0 , sont les suivantes :

C ₀ en mol L ⁻¹	0,01	0,025	0,05	0,075	0,100
t _{1/2} en min	1100	445	220	150	110

- 1- Donner la définition du temps de demi-réaction.
- 2- Montrer que ces résultats sont compatibles avec une cinétique de second ordre. Justifier le raisonnement.
- 3- Calculer la constante de vitesse à 298 K. Donner la valeur dans le système international.
- 4- L'énergie d'activation de la réaction est $E_a = 89 \text{ kJ.mol}^{-1}$; calculer la constante de vitesse à 60 °C.
- 5- En déduire le temps de demi-réaction pour une concentration initiale en réactifs de 0,05 mol L⁻¹.

On donne $R = 8,31 \text{ J.K}^{-1}.\text{mol}^{-1}$

II- Réactions en chaîne (/11)

Considérons la réaction de décomposition thermique en phase gazeuse de l'acétaldéhyde dont l'équation bilan s'écrit : $CH_3CHO \rightarrow CH_4 + CO$

Un mécanisme simplifié peut être décrit en quatre étapes i avec les constantes de vitesse spécifiques k_i :

- 1- CH₃CHO → CH₃' + CHO'
- 2- CH_3 ' + $CH_3CHO \rightarrow CH_4 + CH_3CO$ '
- 3- CH₃CO' \rightarrow CH₃' + CO
- 4- 2 CH_3 $\rightarrow \text{ C}_2\text{H}_6$
- 1- Quelle(s) est (sont) l'(les) étape(s) qui constitue(nt) la phase d'initiation?
- 2- Quelle(s) est (sont) l'(les) étape(s) qui constitue(nt) la phase de rupture?
- 3- Quel est le bilan réactionnel de l'ensemble des autres étapes ? Quel peut-on en dire ?
- 4- Quelle(s) est (sont) l'(les) étape(s) qui constitue(nt) le maillon de la réaction en chaîne ?
- 5- Quels est (sont), selon le mécanisme proposé, le ou les produits principaux et le ou les produits secondaires ?
- 6- Exprimer la vitesse de formation des porteurs de chaînes et de la vitesse de disparition du réactif ?
- 7- En déduire l'expression de la concentration des porteurs de chaînes en fonction des constantes de vitesse spécifiques k_i et de la concentration en réactif. Justifier le raisonnement.
- 8- En déduire l'expression de la concentration en réactif en fonction des constantes de vitesse spécifiques k_i et de la concentration en réactif.
- 9- En fonction des valeurs relatives des k_i, proposer une simplification de cette expression.
- 10- Connaissant cette expression, de quelle manière peut-on vérifier expérimentalement l'ordre partiel de la réaction en réactif ?