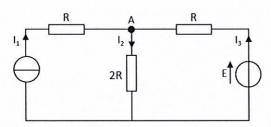


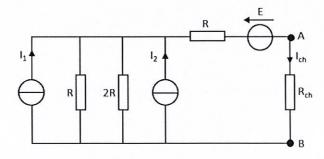
Examen en électronique analogique et numérique (Elec1A)


L1 Sciences et Technologies – Session 1 – Janvier 2025 – Durée : 2 heures

Note : documents non autorisés / calculatrice autorisée

Partie I: électronique analogique

Exercice 1 (7 points):


Soit le circuit ci-dessous :

- 1. Établir la loi des nœuds au point A du circuit.
- 2. En déduire la relation entre l'intensité du courant I₃ et celles des courant I₁ et I₂ (I₃ en fonction de I₁ et I₂).
- 3. Déterminer l'intensité du courant I₂ en fonction de la résitance R, la tension E et l'intensité du courant I₁.
- 4. En prenant les valeurs suivantes : E = 5 V, $R = 15 \Omega$, $I_1 = 2 \text{ A}$, déduire la valeur de I_2 .
- 5. Refaire le calcul du courant I₂ en utilisant le théorème de superposition.
 - N'oubliez pas de donner le circuit et les calculs intermédiaires à chaque étape de travail.

Exercice 2 (7 points):

Soit le circuit électrique ci-dessous :

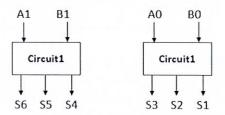
- En appliquant les différents théorèmes de simplification de circuits électriques (générateurs de Thévenin-Norton, association de dipôles et de sources...) et en écrivant à chaque fois le schéma équivalent, simplifier tout le circuit à gauche des points A et B et donner son générateur équivalent de Thévenin de tension E_{th} et de résistance interne R_{th}.
- 2. Exprimer l'intensité du courant I_{ch} en fonction de E_{th}, R_{th} et R_{ch}.
- 3. En prenant E=5V et R=R_{ch}=3Ω, I₁=2A, I₂=3A, déduire les valeurs numériques de E_{th}, R_{th} et I_{ch}.

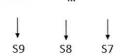
Partie II : électronique numérique

Exercice 1 (6 points):

Soit la fonction logique suivante : $Y = \bar{A}\bar{B}C + \bar{A}B\bar{C} + AC$

Pour réaliser cette fonction on peut utiliser des portes logiques ou un multeplexeur 2 vers 1.


- 1. Dresser la table de vérité d'un multeplexeur 2 vers 1.
- 2. Réaliser un circuit à base de trois multeplexeurs 2 vers 1 qui génére la variable logique Y.
- 3. Simplifier le circuit réalisé vers un circuit utilisant seulement deux multiplexeurs 2 vers 1.


Exercice 2 (8 points):

Soit la table de vérité ci-dessous d'un circuit combinatoire à deux entrées et trois sorties de 1 bit chacune.

A	В	S3	S2	S1	
0	0	1	0 -	0	
0	1	0	1	0	
1	0	0	0	1	
1	1	1	0	0	

- 1. À partir de cette table de vérité, détérminer l'equation logique de chacune des sorties.
- 2. Réaliser le cablâge de ce circuit utilisant les équations obtenues à la question 1.
- 3. Identifier la fonction combinatoire de ce circuit.
- 4. Pour traiter des entrées à 2 bits (A₁A₀ et B₁B₀) avec le même circuit il faut utiliser deux composants.
 - a. Afin de câbler correctemnt les deux composants, donner les equations logiques des sorties S7, S8, S9 en fonction de S1, S2, S3, S4, S5, S6.
 - b. Compléter le logigramme ci-dessous pour avoir le câblage du circuit complet.

Partie III : questions de cours

Pour cette parrtie, répondez directement sur cette feuille et rendez-la à la fin de l'examen avec votre copie en remplissant la case ci-dessous avec votre numéro d'anonymat.

Numéro d'anonymat :

Pour chacune des questions suivantes, il faut choisir la (ou les) bonne(s) réponse(s) (12 points).

- 1. Le déphasage entre le courant traversant un dipôle inductif et la tension à ses bornes est de :
 - a $\pi/2$

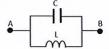
b. - π/2

- c. 0
- dл

- 2. La pulsation du signal $e(t) = 2.5 + \sin(5t + \pi/2)$ est de :
 - a. 5 rad
- b. 5 s

- c. 5 rad.s⁻¹
- d. 5 V
- 3. La durée nécessaire à la charge totale d'un condensateur de capacité $C=10\mu F$ à travers une résistance $R=10k\Omega$ est de :
 - a. 0,5 s
- b. 0,1 s

- c. 10 s
- d. 0,63 s
- 4. Dans un circuit fonctionnant en régime sinusoïdal, la tension et le courant sont a priori :
 - a. De même pulsation et en phase
- c. De même pulsation et déphasés
- b. De pulsations différentes et en phase
- d. De pulsations différentes et déphasés
- 5. Le courant de charge d'un condensateur dans un circuit RC a une allure :
 - a. Exponentielle croissante

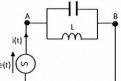

c. Nulle

b. Exponentielle décroissante

- d. Constante
- 6. L'impédance complexe équivalente du circuit vu des points A et B vaut :

a.
$$j \frac{LC}{1-LC\omega^2}$$

c.
$$j \frac{L\omega}{1-LC\omega^2}$$



b.
$$j \frac{C\omega}{1-LC\omega^2}$$

d.
$$j \frac{LC\omega}{1-LC\omega^2}$$

- 7. Dans le circuit ci-contre, $e(t)=U_m\cos(\omega t)$ et $i(t)=I_m\cos(\omega t+\varphi)$. L'amplitude réelle I du courant i(t) qui traverse le dipôle AB s'exprime par :
 - a. $\frac{|1-LC\omega^2|}{C\omega}U_m$

c. $\frac{\left|1-LC\omega^2\right|}{LC\omega}U_m$

b. $\frac{|1-LC\omega^2|}{L\omega}U_m$

- d. $\frac{|1-LC\omega^2|}{LC}U_m$
- 8. L'amplitude du courant $I(\omega)$ traversant un dipôle RLC série alimenté par un générateur de tension sinusoïdale $u(t) = U_m \cos(\omega t)$ est maximale si la pulsation ω :
 - a. Est nulle
- b. Est maximale
- c. Est égale à la pulsation de résonance

9.	Qu a.	elle est la représentation 00001111		complément à un di 10011100		mbre binaire 011000 1111000	11 ? d. 00011100		
10.		elle est la représentation 21		complément à deux -21		nobre binaire signé 1 22	1101010 ? d22		
11.	Le code BCD du nombre 2025 est : a. 0010000000100101 b. 0101001101011000					c. 0010000000101011 d. 0101010101010101			
12.	a.	Dans une table de Karnaugh on utilise le code : a. Binaire naturel b. Excédant 3				c. Réfléchi d. Aiken			
13.	a.	forrme connonique conj Produit de produits Somme de produits	onc	tive est l'écriture de	c.	uation logique sous l Produit de sommes Somme de sommes	la forme de :		
14.	a.	soustraction binaire 0 – D=0, R=0 D=1, R=0	l do	ant (D : Différence, R : Retenue): c. D=0, R=1 d. D=1, R=1					
15.		application du théorème $y = a. \bar{b}c. \bar{d}$	de N	Morgan sur l'équation		gique $y = \overline{a + \overline{b}c} + y$ $y = a + \overline{b}c + \overline{d}$	$ar{d}$ donne :		
	b.	$y = \bar{a}.\bar{c}b.d$			d.	$y = \bar{a} + \bar{c}b + d$			
16.	a.	multiplexeur 8 vers 1 ur 2 bits 3 bits	tilis	e un signal de coma	c.	codé sur : 4 bits 8 bits			

*** Bon courage ***