UNIVERSITE DE BOURGOGNE DEPARTEMENT I.E.M.

L1/Elec2A 2024-2025 Session 1

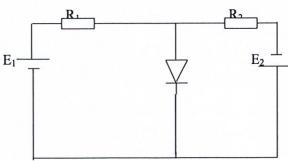
PARTIEL D'ELECTRONIQUE Elec2A (2 h)

Seul document autorisé : note de cours

PC portable et Smartphones sont interdits, toute utilisation serait considérée comme de la triche

Problème Analogique

Exo1 (2 points)

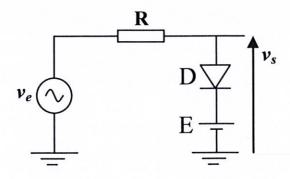

Etudier le circuit électrique suivant dans les deux cas qui suivent :

 1^{er} cas : $E_1 = 3V$ et $E_2 = 4V$

 2^{eme} cas : $E_1 = 15V$ et $E_2 = 10V$

 $R_1 = R_2 = rd = 1\Omega$,

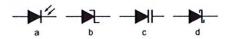
Vd = 0.6V



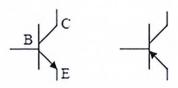
Exo2 (2points)

La source de tension est sinusoïdale de la forme : $ve(t) = VM * sin(\omega t)$.

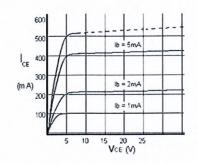
La diode possède une tension de seuil Vd.


Déterminez la tension de sortie ainsi que son allure.

Exo 3 (4 points)


Pour chaque question reportée votre réponse sur la copie. La notation de cet examen est la suivante :

- 1 point par réponse juste ;
- 0 point par réponse sans opinion ;
- -1 point par réponse fausse.
- 1. Lequel des symboles de circuit illustrés sur la figure de gauche représente une diode Zener?
 - a. b. c. d. e. (Sans opinion=.

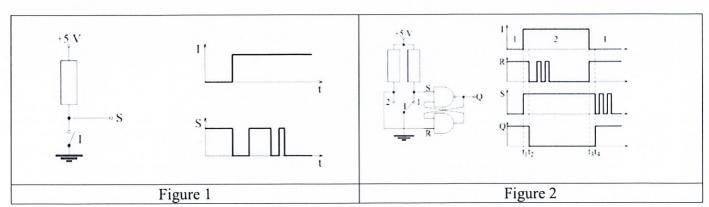

2. Les transistors ci-contre sont :

- a. Respectivement NPN et PNP.
- b. Respectivement PNP et NPN.
- c. A canal N et P.
- d. Sans opinion.

3. Qu'est-ce que les courbes ci-dessous illustrent ?

- a. Les caractéristiques de transfert d'un transistor en mode émetteur commun.
- b. Les caractéristiques de sortie d'un transistor en mode émetteur commun.
- c. Les caractéristiques de transfert d'un transistor en mode collecteur commun.
- d. Les caractéristiques mutuelles d'un transistor en mode émetteur commun.
- e. Sans opinion.

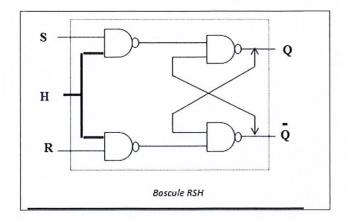
4. On dispose d'un transistor


NPN (amplification en courant : 75, Vbe sat =

0,8 V, Vce sat = 0,2 V) : on donne : $U_E = +0,2$ V, Rb = 10 k Ω et Rc = 1 k Ω . Quel est le régime de fonctionnement du transistor ?

- a. Transistor bloqué
- b. Transistor en régime linéaire
- c. Transistor saturé
- d. Sans opinion.

Problème de LOGIQUE


Exo4 (2 points)

On vous donne un circuit ci-ci-dessus qui est l'utilisation de la bascule RS.

- 1) Expliquer l'aléas du circuit de la figure 1 (montage et le chronogramme)
- 2) Expliquer son fonctionnement qui est la solution en figure 2 (montage et le chronogramme)

Exo5 (4 points)

- 1) Donner son nom
- 2) Expliquer son fonctionnement
- 3) Expliquer l'aléa de fonctionnement de ce circuit
- 4) Proposer une solution pour le corriger

Exo6: Synthèse Asynchrone Bascule RS (4 points)

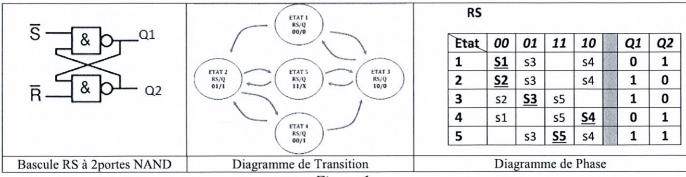


Figure 1

Pour faire la synthèse de cette bascule RS non synchronisé, on dispose du diagramme de transition 3 digrammes en figure 1.

En majuscule et en caractère gras (S) les états stables,

En minuscule (s) les états transitoires

- 1) Expliquer la différence entre un état stable et une transition
- 2) Expliquer la règle de transition utilisée
- 3) Expliquer les 5 étapes qui conduisent à l'élaboration du diagramme de phase Dans le diagramme de phase les états stables sont en majuscule, souligné et gras
 - 4) En utilisant la synthèse d'Huffman, et en admettant une seule variable interne not Q_n, proposer les diagrammes de simplification possibles
 - 5) Faites votre choix de diagramme retenu en expliquant