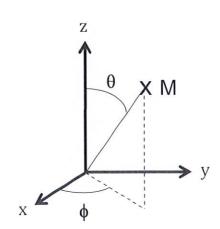
Licence de Chimie Semestre 5

Examen de Chimie Inorganique I Introduction à la cristallographie

Durée : 1h45 Calculette conseillée. Toute réponse doit être justifiée. Il sera tenu compte de la présentation et de la rédaction.

I - Groupe Ponctuel

On donne ci-contre la projection stéréographique du groupe ponctuel 6/mmm.


- 1 Citer tous les opérateurs de symétrie que possède ce groupe. Quel est son degré de symétrie ?
- 2 Représenter la projection stéréographique du groupe ponctuel 622. Quel est son degré de symétrie ?
- 3 Le groupe 622 est un sous-groupe de 6/mmm. Quel opérateur de symétrie faudrait-il ajouter au groupe 622 pour retrouver le groupe 6/mmm ?

I – Projection stéréographique

On étudie la morphologie d'un cristal à l'aide d'un goniomètre optique à deux cercles pour déterminer l'orientation de chaque face du cristal. Les résultats obtenus, donnant l'angle d'inclinaison θ et l'angle d'azimut ϕ sont rassemblés dans le tableau ci-dessous.

Face	a	b	С
θ/°	45	45	45
ф/°	90	210	330

On rappelle ci-dessous la convention selon laquelle sont définis les angles d'inclinaison et d'azimut.

- a Représenter la projection stéréographique des normales aux faces du cristal.
- **b** Déterminer le groupe ponctuel de symétrie. Quel est le degré de symétrie ?
- \mathbf{c} A quelle classe cristalline appartient ce cristal? Rappeler le système d'axes et d'angles définissant cette classe cristalline
- d Proposer, sur un dessin en perspective, quelle serait la morphologie de ce cristal dans l'hypothèse où chaque face du cristal s'est développée de façon identique (même cinétique de croissance cristalline).

III- Oxyde de manganèse MnO

L'oxyde de manganèse MnO cristallise dans la structure de type NaCl.

- 1- Représenter en perspective la maille élémentaire de cet oxyde. Déterminer la multiplicité de la maille. Quelle est la coordinence des anions et des cations ?
- 2 Calculer le paramètre de maille de l'oxyde stoechiométrique.
- 3 Calculer la masse volumique en g.cm⁻³ de l'oxyde stoechiométrique.
- 4 Dans la maille, indiquer quel est le plan (011). Représenter plusieurs mailles accolées dans un plan perpendiculaire à l'axe \vec{a} . Représenter alors dans ce plan (\vec{b} , \vec{c}) les traces de quelques plans réticulaires appartenant à la famille {011}.
- 5 Tracer la normale à cette famille de plans et indexer la.
- 6 Calculer la distance interréticulaire de cette famille de plans.