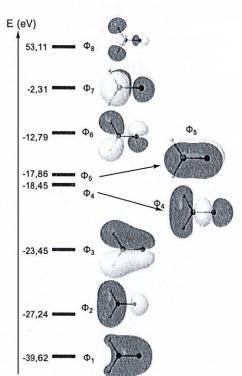
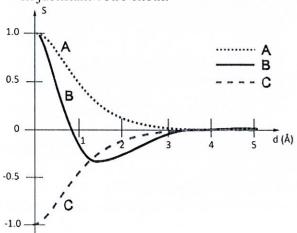
Mardi 24 Juin 2025 Durée 1h30


Cette épreuve est constituée de quatre parties totalement indépendantes les unes des autres.

I. Orbitales moléculaires du méthanal [4 pts]

Dans tout cet exercice, on ne considère que les orbitales et les électrons de valence.


On considère le méthanal H₂CO dont le diagramme d'orbitales moléculaires (OM) est reproduit cicontre.

- 1. Combien y a-t-il d'électrons de valence dans cette molécule ?
- 2. Mettre les électrons dans le diagramme d'OM du méthanal.
- 3. Définir les termes HO et BV.
- 4. Quelle orbitale moléculaire correspond à la HO du méthanal ?
- 5. Quelle orbitale moléculaire correspond à la BV du méthanal ?
- 6. Sur quel atome du méthanal aura lieu l'attaque d'un nucléophile ? Justifier.

II. Autour du cours [4 points]

 Le diagramme ci-dessous représente le recouvrement en deux orbitales atomiques 2p en fonction de la distance entre les deux orbitales. Il y a deux géométries possibles pour les orbitales, l'approche σ (sigma) et l'approche π (pi). Associer chaque courbe à l'approche correspondante en justifiant votre choix.

Approche	Courbe	
Approche π		
d		
Approche σ		
d O		

2) Proposer deux orbitales et leur géométrie d'approche pour que leur recouvrement évolue comme sur la courbe (parmi A, B ou C) qui ne décrit ni l'approche π ni l'approche σ de la question précédente. Justifier.

3) Une interaction à 2 électrons dans 2 orbitales moléculaires est déstabilisante si les orbitales ont des énergies proches

☐ Faux

□ Vrai

4) L'énergie de stabilisation d'une interaction à 2 électrons entre deux orbitales différentes est proportionnelle à $S^2/\Delta\epsilon$

□ Vrai □ Faux

III. Réaction de Diels-Alder avec des hétéro-diènes [6 pts]

On souhaite étudier la régiosélectivité de la réaction de cycloaddition suivante (appelée hétéro-Diels Alder) :

On utilisera l'approche des orbitales frontalières (OF) pour déterminer quel régio-isomère, $\bf A$ ou $\bf B$, sera le produit cinétiquement favorisé dans la réaction. Le tableau ci-dessous indique les énergies des orbitales frontalières et les coefficients de chaque orbitale p_z (à côté de chaque atome) pour chaque molécule.

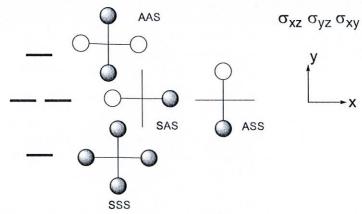
Orbitale HO	Orbitale BV			
NH₂ 	NH ₂			
-0,55	-0,08			
0,08	-0,56			
	\sim s 0,46 E = -0,59 eV			
C N -0,40	C N 0,39			
0,62	-0,55			
$_{0,64}$ E = -10,86 eV	0,68 $E=+0,05 eV$			

- 1. Expliquer pourquoi la réaction ne peut pas être rationalisée par l'interaction entre les deux orbitales HO de chaque molécule.
- 2. Montrer que l'interaction entre les orbitales HO du diène et BV de l'alcène est plus favorable que celle entre les orbitales BV du diène et HO de l'alcène.
- 3. Trouver et justifier quel régio-isomère, A ou B, est formé majoritairement.
- 4. Indiquer et justifier la stéréochimie des deux centres chiraux formés par cette réaction pour le régio-isomère majoritaire.

On se propose maintenant de comparer la réactivité du diène avec différents alcènes. Les alcènes considérés sont représentés ci-dessous :

Alcène 2 Alcène 3 Alcène 4 Alcène 5
$$E_{\rm BV} = 1,44~{\rm eV}$$
 $E_{\rm BV} = -0,14~{\rm eV}$

Les orbitales BV de ces alcènes peuvent avoir une énergie de -0,90 eV, -0,14 eV, +1,44 eV ou +1,55 eV (Elles ne sont pas dans l'ordre des alcènes représentés).


- 5. Associer aux alcènes 4 et 5 l'énergie de l'orbitale BV qui correspond. Justifier.
- 6. Si on considère que la réaction entre le diène et l'alcène est toujours décrite par l'interaction des orbitales HO du diène et BV de l'alcène, classer les alcènes 1 à 5 par vitesse de réaction décroissante (i.e. du plus réactif au moins réactif) ? Justifier vos choix.

IV. Orbitales moléculaires de XeF₄ [6 pts]

On se propose de construire les orbitales moléculaires de XeF₄ dans sa géométrie d'équilibre plan carrée. On modélise la molécule par XeH₄ et on utilise la fragmentation Xe + H₄:

$$H \longrightarrow Xe \longrightarrow H$$

On indique ci-dessous les orbitales moléculaires du fragment H_4 et leur symétrie par rapport aux plans σ_{xz} , σ_{yz} et σ_{xy} :

On admet que les orbitales atomiques (OA) de valence du xénon sont uniquement les orbitales 5s et 5p.

- 1) Indiquez la symétrie des OA de valence du xénon par rapport aux plans σ_{xz} , σ_{yz} et σ_{xy} .
- 2) Construire le diagramme d'interaction entre le xénon et les orbitales du fragment H₄. On précise que les énergies des orbitales du fragment H₄ sont intermédiaires entre celles des orbitales 5s et 5p du xénon.
- 3) Dessiner les OM de XeH₄.

Données

Н]						Не
Li	Ве	В	С	N	0	F	Ne
Na	Mg	Al	Si	Р	S	Cl	Ar