Contrôle Terminal

19 décembre 2024, 13h30 - 15h30

L'usage de tout document est interdit. Le seul dispositif électronique autorisé est la calculatrice non programmable.

Exercice 1

Soit la courbe paramétrée définie par : M(t) $\begin{cases} x(t) = t^2 + \frac{1}{t^2} \\ y(t) = t^2 - 2t \end{cases}$, $t \in]0, \infty[$.

- 1. Calculer x'(t) et y'(t).
- 2. Déterminer le point stationnaire $M(t_0)$.
- 3. Dessiner l'allure de la courbe au point $M(t_0)$, en précisant le sens du déplacement. (On pourra poser $h=t-t_0$ et effectuer un développement limité de x(t) et y(t) en $t=t_0$ jusqu'à l'ordre 3.)
- 4. Étudier les branches en $t \to 0$ et en $t \to \infty$.

Exercice 2

1. Calculer les primitives et les intégrales suivantes :

(a)
$$\int (2x^3 + x^2 - 4x + 3)dx$$
 (b) $\int (x^2 + 4x + 2)^3(x + 2)dx$ (c) $\int x^2 \cos(x)dx$ (d) $\int \frac{1}{x^3 + x^2 - 6x}dx$ (e) $\int_e^{e^3} x^2 \ln(x)dx$ (f) $\int_0^{\frac{\pi}{2}} e^{-2x} \cos(x)dx$

2. Calculer la longueur de la courbe (\mathcal{C}) définie par la représentation paramétrique M(t):

$$x(t) = e^t \cos(t), \qquad y(t) = e^t \sin(t), \qquad t \in [0, 2\pi].$$

3. Déterminer l'aire de la région délimitée par les courbes (\mathcal{C}_f) et (\mathcal{C}_q) associées respectivement aux fonctions f et g, définies par :

$$f(x) = x^2 + 4x - 3$$
, $g(x) = -x^2 + 2x + 1$.

Exercice 3

Pour chaque équation différentielle suivante, déterminer d'abord la solution générale de l'équation homogène (E_0) associée à (E), puis trouver une solution particulière y_p de (E). En déduire ensuite la solution générale complète de (E).

- 1. $(E): y' + 2y = \cos(x)$ $(y_p = A\cos(x) + B\sin(x))$ où A, B sont des constantes) 2. $(E): y'' 2y' + y = x^3 e^x$ $(y_p = Q(x)e^x)$ où Q est un polynôme)
- 3. $(E): y'' 2y' + 2y = e^x \cos(2x)$ $(y_p = (A\cos(2x) + B\sin(2x))e^x$ où A, B sont des constantes)