Examen

18 décembre 2024; durée : 2 h

Ex 1. Question de cours.

Soit $D \subset \mathbb{R}^n$ un ouvert et f une fonction $f: D \longrightarrow \mathbb{R}$.

- a) Donner la définition d'une fonction f differentiable au point $x \in D$.
- b) Donner la définition de la dérivée directionnelle $D_h f$ en direction $h \in \mathbb{R}^n$ au point $x \in D$.
- c) Montrer que si f est différentiable au point $x \in D$ elle admet des dérivées directionnelles $D_h f$ $\forall h \in \mathbb{R}^n$.

Ex 2. Calculer le gradient et le laplacien de la fonction $f: \mathbb{R}^3 \to \mathbb{R}$ suivante

$$f(\mathbf{x}) = \langle \mathbf{x} \wedge \mathbf{a}, \mathbf{x} \wedge \mathbf{b} \rangle,$$

où $\mathbf{a},\mathbf{b}\in\mathbb{R}^3$

Ex 3. Déterminer les points critiques de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ suivante

$$f(x,y) = x^2y^2 - 5x^2y + 4x^2 - y^3 + 12y,$$

et préciser pour chacun d'eux s'il s'agit d'un maximum local, d'un minimum local ou d'un point selle

 $\mathbf{E}\mathbf{x}$ 4. Soit D la partie bornée du plan délimitée par les courbes d'équation :

$$y = x - 2;$$
 $y = x^2 - x - 2,$

- a) Trouver l'aire de D.
- b) Calculer les coordonnées du centre de gravité de D.

Ex 5. Calculer l'intégrale

$$\int\limits_{D} \frac{x+y}{x^2+y^2} \, dx dy,$$

où D est un demi-disque défini par

$$D = \{(x, y): y \ge 0, x^2 + y^2 \le R^2\}.$$