Lundi 12 Mai 2025, durée 1h30. Calculatrices autorisées.

Exercice 1. Lors d'une expérience en laboratoire, on étudie une membrane semi-perméable et on compte N, le nombre d'ions Na+ qui traversent la membrane en un temps t fixé. Après 68 répétitions de l'expérience, on répartit les valeurs observées dans le tableau ci-dessous.

N nbre d'ions qui traversent	0 à 9	10 à 19	20 à 29	30 à 39	40 à 49	50 à 59	60 à 69	70 ou plus
Nombre d'expériences n_i^{obs}	1	12	19	9	8	9	5	5

1. Compléter les données de l'expérience en calculant les fréquences observées f_i^{obs} .

On se demande si la répartition observée dans l'expérience correspond à une répartition théorique donnée par les probabilités suivantes :

nbre d'ions qui traversent	0 à 9	10 à 19	20 à 29	30 à 39	40 à 49	50 à 59	60 à 69	70 ou plus
Probabilité théorique p_i	0,08	0,12	0,20	0,20	0,20	0,10	0,06	0,04

- 2. Compléter le tableau de la répartition théorique en calculant les effectifs théoriques n_i^{th} .
- 3. Au niveau de risque de 5%, affirmeriez-vous que la répartition du nombre d'ions traversant la membrane avant le temps t est conforme à la répartition théorique? Justifier en rédigeant le test statistique (rappel: pour effectuer un test d'ajustement de loi, les effectifs théoriques doivent tous être supérieurs ou égaux à 5).

Exercice 2. Un ingénieur souhaite vérifier la résistance \mathcal{R} d'un nouveau type de conducteur qu'il vient de mettre au point. Se basant sur la loi d'Ohm, il effectue une série de mesures de tension U (mesurée en Ampères) et d'intensité I (mesurée en Volts) du courant électrique, présentées dans le tableau ci-dessous:

Tension (V)	3,44	2,65	3,36	3,91	3,43	4,06	4,41	2,31	4,19	4,01	2,80	3,16	5,17	3,87	3,09	2,60	4,34
Intensité (A)	0,65	0,49	0,69	0,79	0,62	0,84	0,87	0,46	0,81	0,77	0,57	0,68	1,01	0,81	0,53	0,49	0,85

L'objectif est de modéliser la relation entre la tension (U) et l'intensité du courant (I) à l'aide d'une régression linéaire :

$$U = U_0 + \mathcal{R}I + \epsilon$$

- où U_0 représente une tension parasite résiduelle.
 - 1. Pour la série de mesures présentée dans le tableau, calculer la tension moyenne, l'écart-type de la tension, l'intensité moyenne, l'écart-type de l' intensité, la corrélation entre l'intensité et la tension (arrondis à deux décimales pour les moyennes et écart-types, arrondis à 3 décimales pour la corrélation).
 - 2. Déterminer l'équation de la droite de régression linéaire de U en fonction de I.
 - 3. En supposant les résidus normalement répartis, pouvez-vous valider ce modèle linéaire avec un niveau de risque de 5% ? (test de corrélation: hypothèses, description du modèle statistique, valeur expérimentale et décision) Prendriez-vous une autre décision si le niveau de risque est de 1% au lieu de 5% ?
 - 4. Étudier la normalité de ces résidus pour un niveau de risque de 5% (test de normalité: hypothèses, description du modèle statistique, valeur expérimentale et décision).
 - 5. En appliquant un courant d'intensité 0,8 A au conducteur, quelle tension peut-on s'attendre à mesurer ? Donner l'intervalle de confiance à 95%.