Examen - 6 janvier 2025

Durée : 2h

L'usage de notes, d'une calculatrice ou de tout autre appareil électronique n'est pas autorisé. Tout argument mathématique doit être soigneusement justifié, en privilégiant clarté et concision.

Exercice 1. (Questions de cours)

- 1. Soient $a, b \in \mathbb{R}$ tels que a < b et $f :]a, b[\to \mathbb{R}$ une fonction croissante. Que pouvez-vous dire de $\lim_{x \to b} f(x)$ (existence, valeurs possibles)? [1 point]
- 2. Quel est le développement limité de $x \mapsto \ln(1+x)$ à l'ordre 3 en 0?

[1 point]

Exercice 2. On définit la fonction $f: [-1,1[\to \mathbb{R}, x \mapsto \frac{\sqrt{1-x^2}}{1-x}]]$

1. Montrez que f n'est pas dérivable en -1.

[1 point]

2. Pour tout $x \in]-1,1[$, justifiez l'existence de f'(x) et déterminez-en une expression.

[1,5 points]

3. Montrez que f établit une bijection de [-1,1] vers \mathbb{R}_+ .

[2 points]

4. Déterminez le développement limité de f à l'ordre 2 en 0.

[1,5 points]

- 5. Déterminez l'équation de la droite tangente au graphe Γ_f en 0. Quelle est, localement au voisinage de 0, la position relative de Γ_f par rapport à sa tangente? [1 point]
- 6. Déterminez les primitives de f. [Indice: tout $x \in [-1,1]$ peut s'écrire sous la forme $x = \sin(t)$, avec $t \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.] 3m 3-2, 1 [2 points]
- 7. Déterminez l'aire algébrique sous le graphe de f entre <u>-1</u> et 0. [1 point] [On rappelle que par "aire algébrique sous le graphe" on entend une aire délimitée par le graphe qui est comptée positivement sur les intervalles où le graphe est au-dessus de l'axe des abscisses, et négativement autrement.]

Exercice 3. On considère la fraction rationnelle $g(x) = \frac{2x-17}{x^2+x-20}$.

- 1. Déterminez le domaine de définition maximal de g, que vous noterez \mathcal{D}_g . [1 point]
- 2. À l'aide d'un développement limité en $+\infty$ à l'ordre 2, déterminez la position de Γ_g par rapport à la courbe d'équation $y = \frac{2}{x}$ au voisinage de $+\infty$. [2 points]
- 3. Décomposez q en éléments simples.

[2 points]

4. Déterminez les primitives de g.

[1 point]

Exercice 4. Déterminez les primitives suivantes :

1.
$$\int x^{20} \cosh(x^{21} + \pi) \, \mathrm{d}x$$

[1 point]

2.
$$\int (x^2 - x) \cos(x) dx$$

[2 points]