Contrôle Terminal de Math1B

Aucun document et aucun appareil électronique (téléphone inclus) n'est autorisé.

Durée: 2 heures

Question de cours 1 (2 points). Expliquer ce qu'est une démonstration par récurrence.

Question de cours 2 (5 points).

- (1) Soient $a, b \in \mathbb{Z} \setminus \{0\}$. Démontrer qu'il existe $u, v \in \mathbb{Z}$ tels que $au + bv = \operatorname{pgcd}(a, b)$.
- (2) Soient $a, b, d \in \mathbb{Z} \setminus \{0\}$. Démontrer que, si d divise a et b, alors d divise $\operatorname{pgcd}(a, b)$.
- (3) Soient $a, b, c \in \mathbb{Z} \setminus \{0\}$. Démontrer que, si a divise bc et pgcd(a, b) = 1, alors a divise c.

Question de cours 3 (3 points).

(1) Soit \mathcal{D} une droite affine dans le plan P d'équation

$$(E) \quad ax + by = c \,,$$

où $(a,b) \neq (0,0)$. Posons $\omega = a + ib \in \mathbb{C}^*$ et k = 2c. Soit $M \in P$ d'affixe $z \in \mathbb{C}$. Démontrer que $M \in \mathcal{D}$ si et seulement si z vérifie l'égalité

$$(E_{\mathbb{C}})$$
 $\bar{\omega}z + \omega\bar{z} = k$.

(2) Soient Ω un point du plan P d'affixe ω et r un nombre réel strictement positif. Notons \mathcal{C} le cercle de centre Ω et de rayon r. Soit $M \in P$ d'affixe $z \in \mathbb{C}$. Démontrer que $M \in \mathcal{C}$ si et seulement si z vérifie l'égalité

$$(E_{\mathbb{C}})$$
 $z\bar{z} - \bar{\omega}z - \omega\bar{z} = r^2 - |\omega|^2$.

Exercice 1 (3 points).

- (1) Soit $f : \mathbb{R} \to \mathbb{R}$ l'application définie par $f(x) = x^2$ pour tout $x \in \mathbb{R}$. Donner (sans justifier) $f(]0,1[), f([1,2[), f([-3,-2]), f^{-1}(]0,1[), f^{-1}([1,2[) \text{ et } f^{-1}([-3,-1]).$
- (2) Soit $f: \mathbb{R} \to \mathbb{R}$ l'application définie par $f(x) = e^x$ pour tout $x \in \mathbb{R}$. Donner (sans justifier) $f(]0,1[), f([1,2[),f(]-\infty,-1]), f^{-1}(]0,1[), f^{-1}([0,2[) \text{ et } f^{-1}([-6,-1]).$
- (3) Soit $f: \mathbb{R} \to \mathbb{R}$ l'application définie par $f(x) = \sin(x)$ pour tout $x \in \mathbb{R}$. Donner (sans justifier) $f([0, \pi[), f([0, 2\pi[), f^{-1}(\{0\}), f^{-1}([-1, 1]))])$ et $f^{-1}(\{\frac{1}{2}\})$.

Exercice 2 (4 points). Résoudre dans $\mathbb C$ l'équation suivante :

(E)
$$iZ^2 + (4+3i)Z + 7 - i = 0$$
.

Exercice 3 (3 points).

- (1) Calculer $\sin(4\theta)$ en fonction de puissances de $\sin(\theta)$ et de $\cos(\theta)$.
- (2) Calculer $\sin^4(\theta)$ en fonction de $\cos(2\theta)$ et $\cos(4\theta)$.