Contrôle Terminal de Math1B

Aucun document et aucun appareil électronique (téléphone inclus) n'est autorisé.

Durée: 2 heures

Question de cours 1 (4 points).

- (1) Soient $a, b \in \mathbb{Z} \setminus \{0\}$. Donner la définition du plus petit multiple commun de a et b, noté ppcm(a, b).
- (2) Soient $a, b \in \mathbb{N}^*$. Démontrer que $\operatorname{pgcd}(a, b) \cdot \operatorname{ppcm}(a, b) = ab$.
- (3) Soient $a, b, c \in \mathbb{N}^*$. Démontrer que, si a et b divisent c, alors ppcm(a, b) divise c.

Question de cours 2 (4 points).

- (1) Soient $z_1, z_2 \in \mathbb{C}$. Montrer que $\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$ et $\overline{z_1 \cdot z_2} = \overline{z}_1 \cdot \overline{z}_2$.
- (2) Soient $z, z' \in \mathbb{C}$. Montrer que $|z|^2 = z \cdot \bar{z}$ et $|z \cdot z'| = |z| \cdot |z'|$.
- (3) Soit $z \in \mathbb{C}$. Montrer que |z| = 0 si et seulement si z = 0.

Question de cours 3 (2 points). Soit \mathcal{D} une droite affine dans le plan P d'équation

$$(E) \quad ax + by = c,$$

où $(a,b) \neq (0,0)$. Posons $\omega = a + ib \in \mathbb{C}^*$ et k = 2c. Soit $M \in P$ d'affixe $z \in \mathbb{C}$. Démontrer que $M \in \mathcal{D}$ si et seulement si z vérifie l'égalité

$$(E_{\mathbb{C}})$$
 $\bar{\omega}z + \omega\bar{z} = k$.

Exercice 1 (4 points). Soient a = 1245 et b = 945.

- (1) Calculer pgcd(a, b) avec l'algorithme d'Euclide.
- (2) En déduire une identité de Bézout.
- (3) Calculer ppcm(a, b).
- (4) Déterminer l'ensemble des couples $(u, v) \in \mathbb{Z} \times \mathbb{Z}$ tels que $ua + vb = \operatorname{pgcd}(a, b)$.

Exercice 2 (3 points). Résoudre dans C l'équation suivante :

$$Z^2 + (-1+4i)Z - 5 + i = 0.$$

Exercice 3 (3 points).

- (1) Calculer le module et un argument de $1 + i\sqrt{3}$ et de 1 + i. En déduire le module et un argument de $z_0 = \frac{1+i\sqrt{3}}{1+i}$.
- (2) Déduire de (1) une expression exponentielle puis une expression algébrique de $(z_0)^8$.
- (3) Résoudre dans \mathbb{C} l'équation $Z^3 + z_0 = 0$. On donnera les solutions sous forme exponentielle.