Examen

durée: 2h

La calculatrice est interdite

IMPORTANT : Pour obtenir les points aux questions, vous devez rédiger de façon rigoureuse les démonstrations et justifier précisément toutes vos affirmations.

Questions de cours (7 pts)

- 1. Donner la première inégalité triangulaire pour trois réels x, y, z et la démontrer.
- 2. Soient I un intervalle ouvert et $x_0 \in I$
 - (a) Soit f une fonction définie sur I. Donner la définition de f est dérivable en x_0 .
 - (b) Soit f une fonction définie sur I, dérivable en x_0 et qui ne s'annule pas sur I. Démontrer que $g(x) = \frac{1}{f(x)}$ est dérivable en x_0 et donner $g'(x_0)$.
 - (c) Soit f une fonction dérivable et de dérivée positive sur I. Démontrer que f est croissante sur I.

Exercice 1 (3 pts)

- 1. Donner le développement limité à l'ordre 2 en 0 de $x\mapsto \frac{\sin x}{x}$.
- 2. Donner le développement limité à l'ordre 2 en 0 de $x\mapsto \ln\left(\frac{\sin x}{x}\right)$.
- 3. En déduire un équivalent de la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n = \ln\left(n\sin(\frac{1}{n})\right)$.
- 4. En déduire la limite de la suite $(v_n)_{n\in\mathbb{N}^*}$ définie par

$$v_n = n^2 \ln \left(n \sin(\frac{1}{n}) \right)$$

Exercice 2 (4 pts)

Soit la fonction f définie sur $[0; +\infty[$ par $f(x) = x + \ln(1+x)$.

- 1. Montrer que f est une bijection de $[0; +\infty[$ sur un ensemble à préciser.
- 2. Déterminer $f^{-1}(1 + \ln 2)$.
- 3. Donner en le justifiant l'ensemble de dérivabilité de f^{-1} .
- 4. Rappeler la formule donnant $(f^{-1})'(y)$ et calculer $(f^{-1})'(1 + \ln 2)$.

Tourner la page

Exercice 3 (3 pts)

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par :

$$f(x) = \begin{cases} 0 & \text{si } x \leq 0\\ x^2 \sin(1/x) & \text{si } x > 0 \end{cases}$$

- 1. Montrer que f est continue sur \mathbb{R} .
- 2. Montrer que f est dérivable sur \mathbb{R} et donner sa dérivée pour tout $x \in \mathbb{R}$.
- 3. La fonction f est-elle de classe C^1 sur \mathbb{R} ?

Exercice 4 (4 pts)

- 1. Donner la formule de Taylor-Lagrange pour cos(x) à l'ordre 3 en 0 (reste à l'ordre 4).
- 2. En déduire l'inégalité, pour tout $x \in \mathbb{R}$:

$$\left|\cos(x) - 1 + \frac{x^2}{2}\right| \leqslant \frac{x^4}{24}$$

3. En déduire une estimation de $\cos(\frac{1}{2})$ et une majoration de l'erreur (on exprimera chacun de ces deux résultats sous forme d'une seule fraction).