Examen L1 Math 2B, session 2

durée 2 heures

L'usage de tout appareil électronique est interdit. Les documents ne sont pas non plus autorisés. La rédaction et la clarté des arguments seront prises en compte dans la notation.

Exercice 1 (3 pts). Vrai ou faux? Justifier votre réponse.

- (i) Une application linéaire $f: \mathbb{R} \to \mathbb{R}^2$ est toujours injective.
- (ii) Si $f: E \to E$ est un endomorphisme surjectif d'un \mathbb{K} -e.v. E de dimension n et \mathcal{B} est une base de E, alors $A = Mat(f, \mathcal{B})$ est inversible.
- (iii) Soit $A \in M_n(\mathbb{K})$ une matrice carrée. Alors $\det(A, tA) = \det(A)^2$.

Exercice 2 (6 pts). Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3x + y + 2z \\ 2y + 4z \\ x + y + 2z \end{pmatrix}.$$

- (a) Déterminer une base de Ker(f).
- (b) Déterminer une base de $\operatorname{Im}(f)$. (c) A-t-on $\operatorname{Ker}(f) \oplus \operatorname{Im}(f) = \mathbb{R}^3$? Justifier votre réponse.

Exercice 3 (6 pts). Pour
$$t \in \mathbb{R}$$
 on définit $A_t = \begin{pmatrix} t & 1 & 1 \\ 1 & t & 1 \\ 1 & 1 & t \end{pmatrix}$.

- (a) Calculer le déterminant de A_t .
- (b) Déterminer le rang de A_t pour tout $t \in \mathbb{R}$.
- (c) Calculer A_t^{-1} pout toutes les valeurs t pour lesquelles A_t est inversible.

Exercice 4 (5 pts). Soit $E = \mathbb{R}[X]_{\leq 2}$ l'espace vectoriel des polynômes réelles de degré ≤ 2 en X. On définit $f: E \to E$ par $f(P) = X\overline{P'} + 2P + P''$.

- (a) Montrer que f est une application linéaire.
- (b) Donner la dimension et la base canonique \mathcal{B} de E.
- (c) Déterminer la matrice $Mat(f, \mathcal{B})$.
- (d) Déterminer le polynôme caractéristique, les valeurs propres et les vecteurs propres de f.