L'énoncé est constituée d'exercices **indépendants** (il n'est pas nécessaire d'avoir réussi un exercice pour pouvoir faire les autres) dont les deux premiers portent sur le théorème suivant :

Théorème de dérivation d'une limite de fonctions

Soit une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions réelles, définies sur un intervalle $I\subset\mathbb{R}$ et telles que

- i) pour chaque $n \in \mathbb{N}$, la fonction f_n est de classe \mathcal{C}^1 sur I.
- ii) $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers une fonction $f:I\to\mathbb{R}$.
- iii) $(f'_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers une fonction $g:I\to\mathbb{R}$.

Alors, la fonction f est de classe C^1 sur I, et sa dérivée est g.

Exercice 1 : Preuve du théorème

On considère des fonctions f et g et une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions réelles, définies sur un intervalle $I\subset\mathbb{R}$, qui satisfont les hypothèses i), ii) et iii) du théorème.

Cet exercice vise à démontrer qu'alors f est de classe C^1 sur I, et que sa dérivée est g.

- 1. Justifier que la fonction g est nécessairement continue sur I.
- 2. Dans cette question, on fixe un nombre $x_0 \in I$. On va chercher à démontrer que f est dérivable en x_0 et que $f'(x_0) = g(x_0)$.
 - (a) Exprimer avec des quantificateurs l'affirmation « g est continue en x_0 ».
 - (b) Exprimer de même l'affirmation « $(f'_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers g ».
 - (c) Pour $x \in I$, on désigne par $I_0(x)$ l'intervalle $I_0(x) = \begin{cases} [x,x_0] & \text{si } x \leqslant x_0 \\ [x_0,x] & \text{si } x \geqslant x_0. \end{cases}$ Justifier que pour tout $n \in \mathbb{N}$ et tout $x \in I$, il existe un nombre $h_n(x) \in I_0(x)$ tel que $f_n(x) f_n(x_0) = (x x_0) f'_n(h_n(x))$.
 - (d) Grâce aux résultats des questions 2a, 2b et 2c, montrez que $\forall \varepsilon > 0, \exists \delta > 0 : \exists N \in \mathbb{N} : \forall n \in [N; +\infty[, \forall x \in]x_0 \delta, x_0 + \delta[\cap I, |f_n(x) f_n(x_0) (x x_0)g(x_0)] \leqslant \frac{2\varepsilon}{3}|x x_0|.$ Indications:
 - Vous serez peut-être amené·e à utiliser le résultat des questions 2a et 2b pour une autre valeur de ε (par exemple $\varepsilon/2$ ou $\varepsilon/3$ ou quelque chose d'analogue).
 - Vous serez probablement amené e à décomposer $f'_n(h_n(x)) g(x_0)$ sous la forme $(f'_n(h_n(x)) g(h_n(x))) + (g(h_n(x)) g(x_0))$.
 - (e) En déduire que $\forall \varepsilon > 0, \exists \delta > 0 : \forall x \in]x_0 \delta, x_0 + \delta[\cap I \setminus \{x_0\}, |f(x) f(x_0) (x x_0)g(x_0)| < \varepsilon |x x_0|.$
 - (f) Conclure que f est dérivable en x_0 avec $f'(x_0) = g(x_0)$.
- 3. Conclure que f est de classe \mathcal{C}^1 sur I avec f'=g.

Exercice 2: Convergence vers la valeur absolue

Pour tout $n \in \mathbb{N}^*$, on définit la fonction $f_n : \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \sqrt{x^2 + \frac{1}{n}}. \end{cases}$

- 1. Démontrer que $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} vers la fonction valeur absolue.
- 2. Démontrer que chaque fonction f_n est de classe \mathcal{C}^1 sur \mathbb{R} , et calculer sa dérivée.
- 3. Utilisez le théorème de dérivation d'une limite de fonctions pour démontrer que $(f'_n)_{n\in\mathbb{N}^*}$ ne converge pas uniformément sur \mathbb{R} .

- 4. Montrer que sur \mathbb{R}_+^* et sur \mathbb{R}_-^* , la suite $(f'_n)_{n\in\mathbb{N}^*}$ converge simplement vers une fonction (que l'on notera g dans la suite de cet exercice).
- 5. Montrer que pour tout $n \in \mathbb{N}^*$, $\sup_{x \in \mathbb{R}_+^*} |f_n'(x) g(x)| = 1$. En déduire que $(f_n')_{n \in \mathbb{N}^*}$ ne converge pas uniformément sur \mathbb{R}_+^* . Indication : on pourra étudier la monotonie de $x \mapsto \frac{1}{\sqrt{1+\frac{1}{n\,x^2}}} 1$ sur \mathbb{R}_+^* et ses limites en 0 et en $+\infty$.
- 6. Soit $\delta > 0$. Montrer que sur $[\delta, +\infty[$, la suite $(f'_n)_{n\in\mathbb{N}^*}$ converge uniformément.

Exercice 3: Séries entières

1. Déterminer le rayon de convergence de chacune des séries entières ci-dessous :

i) $\sum (-1)^n \frac{n-1}{n+1} z^n$

ii) $\sum z^{n!}$

2. Montrer que la fonction $x \mapsto (1-x)\cos(\pi x)$ est developpable en série entière au voisinage de 0. Déterminer les coefficients de ce développement en série entière, et son rayon de convergence.

Exercice 4: Rayon de convergence

Un·e étudiant·e a répondu à l'énoncé suivant :

Pour chaque série entière $\sum a_n z^n$ ci-dessous, déterminer son rayon de convergence R, et sa somme $\sum_{n=0}^{\infty} a_n z^n$ sur le disque D(0,R).

i) $\sum \cos(\frac{n\pi}{2})z^n$

ii) $\sum (-1)^n \frac{n}{n+1} z^n$

Il/elle a écrit la réponse ci-dessous

i)
$$1/R = \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \lim_{n \to +\infty} \frac{\cos((n+1)\frac{\pi}{2})}{\cos(\frac{n\pi}{2})} = 1$$
.

De plus, quand $|z| < 1$, $\sum_{n=0}^{+\infty} z^n = \frac{1}{1-z}$, donc $\sum_{n=0}^{+\infty} \cos(\frac{n\pi}{2}) z^n = \frac{\cos(\frac{n\pi}{2})}{1-z}$.

ii) D'après le critère de Hadamard,

$$\frac{1}{R} = \lim_{n \to +\infty} \left(a_n \right)^{\frac{1}{n}} = \lim_{n \to +\infty} -1 \times \left(\frac{n}{n+1} \right)^{1/n} = -\left(\lim_{n \to +\infty} \frac{n}{n+1} \right)^0 = -1.$$

 $\operatorname{Donc}\ R=-1\,.$

De plus
$$(-1)^n \frac{n}{n+1} = (-1)^n - \frac{(-1)^n}{n+1}$$
,

donc
$$\sum_{n=0}^{+\infty} (-1)^n \frac{n}{n+1} z^n = \sum_{n=0}^{+\infty} (-1)^n z^n - \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} z^n = \frac{1}{1-z} + \frac{\ln(1+z)}{z}$$
.

- 1. Pour chacune des questions (i) et ii)), la réponse de l'étudiant e est-elle correcte? Si ce n'est pas le cas indiquez clairement quels aspects de la réponse sont insuffisants et/ou faux.
- 2. Pour chacune des questions (i) et ii)), si vous avez jugé que la réponse l'étudiant e n'était pas bonne (ou pas assez bonne), réécrire complétement la réponse en donnant une réponse correcte et satisfaisante.