Examen Session 2

Lundi 16 juin 2025 (Durée: 2h)

Exercice 1 (Questions de cours (6 points)).

- (1) Énoncer et démontrer le théorème d'existence de la base antéduale.
- (2) Énoncer le lemme des noyaux. Le démontrer pour un produit de deux polynômes premiers entre eux.

Exercice 2 (Maîtrise de concepts (4 points)).

Les affirmations suivantes sont-elles vraies ou fausses ? Toute réponse non clairement justifiée ne sera pas considérée. Dans toutes les questions, E est un \mathbb{K} -espace vectoriel de dimension finie, avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

- (1) Une matrice triangulaire supérieure est diagonalisable si les coefficients diagonaux sont tous distincts.
- (2) Soit $A, B \in M_n(\mathbb{K})$ tels que B est inversible. Alors $P(t) = \det(A + tB)$ est un polynôme en t de degré n.
- (3) Soit $S = \{e_1, \dots, e_k\}$ une famille génératrice d'un espace vectoriel E, et F un sous-espace vectoriel de E. Alors $S \cap F$ est une famille génératrice de F.
- (4) Soit $A \in M_n(\mathbb{K})$. On suppose que A = D + N où D est diagonalisable et N est nilpotente. Alors A et D ont les mêmes valeurs propres.

Exercice 3 (7 points).

Soit $n \in \mathbb{N}$, et soit φ l'application de $\mathbb{R}_2[X]$ dans $\mathbb{R}_2[X]$ définie par

$$\varphi(P) = P + P' + P''.$$

- (1) Calculer la matrice A de φ dans la base $\{1, X, X^2\}$.
- (2) Montrer que A n'est pas diagonalisable, et calculer sa décomposition de Dunford.
- (3) Soit $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $N = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Montrer que D est diagonalisable, N est nilpotente et D
- (4) On pose B = D + N. Calculer B^n pour tout $n \in \mathbb{N}$.
- (5) On considère le système d'équations différentielles d'inconnues x(t), y(t), z(t):

(E):
$$\begin{cases} x'(t) = 2x(t) - y(t) \\ y'(t) = x(t) - 2y(t) \\ z'(t) = z(t) \end{cases}$$

Calculer l'unique solution de E telle que x(0) = y(0) = z(0) = 1.

Exercice 4 (5 points).

Soit $A \in M_n(\mathbb{C})$.

- (1) En utilisant que A est trigonalisable, montrer que Tr(A) est égale à la somme des valeurs propres de A, comptées avec multiplicité.
- (2) Montrer que A est nilpotente si et seulement si 0 est la seule valeur propre de A. (indication: utiliser Cayley-Hamilton)
- (3) Montrer que si A est nilpotente, alors $Tr(A^k) = 0$ pour tout $k \ge 1$.