Examen - Session 2 - 17 juin 2025

- Durée : 2h -

L'usage de notes, d'une calculatrice ou de tout autre appareil électronique n'est pas autorisé. Tout argument mathématique doit être soigneusement justifié, en privilégiant clarté et concision.

Exercice 1. (Questions de cours)

- 1. Soit $(E, \|\cdot\|)$ un \mathbb{R} -espace vectoriel normé. Montrer que :
 - (a) toute union d'ouverts de E est un ouvert de E;
 - (b) toute intersection finie d'ouverts de E est un ouvert de E.
- 2. Déterminer l'intérieur et l'adhérence des sous-ensembles suivants de $\mathbb R$:
 - (a)]0,1[; (b) [2,3]; (c) $]-\infty,1].$
- 3. Soient $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ des \mathbb{R} -espaces vectoriels normés, et $f: E \to F$ une application linéaire. Montrer que f est continue si et seulement si : il existe $k \in \mathbb{R}_+^*$ tel que f est k-lipschitzienne.

Exercice 2. Soit $(E, \|\cdot\|)$ un \mathbb{R} -espace vectoriel normé, et $(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ une suite à valeurs dans E.

- 1. Rappeler à quelle condition $(u_n)_{n\in\mathbb{N}}$ est une suite de Cauchy.
- 2. Montrer que si $(u_n)_{n\in\mathbb{N}}$ est convergente, alors c'est une suite de Cauchy.
- 3. Montrer que si $(u_n)_{n\in\mathbb{N}}$ est une suite de Cauchy, alors elle est bornée.
- 4. Montrer que si $(u_n)_{n\in\mathbb{N}}$ est une suite de Cauchy possédant une valeur d'adhérence $\ell\in E$, alors elle converge vers ℓ .

Exercice 3. Soit $n \in \mathbb{N}^*$ et $E = M_n(\mathbb{R})$. On définit le sous-ensemble des matrices orthogonales

$$O_n(\mathbb{R}) = \{ M \in E \mid MM^t = I_n \}$$

1. Justifier que, pour tout $i, j \in \{1, ..., n\}$, les applications

$$\pi_{i,j}: E \to \mathbb{R}, \quad M = (m_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \mapsto m_{i,j}$$

sont continues.

2. En déduire que, pour tout $i, j \in \{1, ..., n\}$, les applications

$$\psi_{i,j}: E \to \mathbb{R}, \quad M = (m_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \mapsto \sum_{k=1}^n m_{i,k} m_{j,k}$$

sont continues.

- 3. Exprimer $O_n(\mathbb{R})$ au moyen des applications $\psi_{i,j}$ et en déduire qu'il s'agit d'un fermé de E.
- 4. L'ensemble des matrices orthogonales $O_n(\mathbb{R})$ est-il borné dans E?
- 5. Montrer que l'application $f: M_n(\mathbb{R}) \to \mathbb{R}, M \mapsto \operatorname{tr}(M^2)$ est bornée et atteint ses bornes sur $O_n(\mathbb{R})$.

Exercice 4. On définit \mathcal{C} comme l'ensemble des points du plan $(x,y) \in \mathbb{R}^2$ vérifiant l'équation :

$$x^2 + y^2 - 6xy + 3 = 0$$

1. On définit la forme quadrique

$$q: \mathbb{R}^2 \to \mathbb{R}$$
, $(x,y) \mapsto x^2 + y^2 - 6xy$

Quelle est sa matrice symétrique B associée?

- 2. Déterminer les valeurs propres de B, puis trouver une base orthonormée (v_1, v_2) qui la diagonalise.
- 3. On note $(x', y') \in \mathbb{R}^2$ les coordonnées associées à la base (v_1, v_2) . Déterminer l'équation cartésienne de \mathcal{C} dans ces nouvelles coordonnées.
- 4. Quelle est la nature de C?