Examen – 17 décembre 2024

- Durée : 2h -

L'usage de notes, d'une calculatrice ou de tout autre appareil électronique n'est pas autorisé. Tout argument mathématique doit être soigneusement justifié, en privilégiant clarté et concision.

Exercice 1. (Questions de cours)

- 1. Soient $n \in \mathbb{N}^*$ et $p \in [1, +\infty[$. Après avoir rappelé leurs définitions, montrer que les normes $\|\cdot\|_p$ et $\|\cdot\|_{\infty}$ sur \mathbb{R}^n sont équivalentes.
- 2. Soient \mathcal{N}_1 et \mathcal{N}_2 deux normes sur un espace vectoriel E, telles que \mathcal{N}_2 domine \mathcal{N}_1 . Montrer que si une suite $(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ converge dans (E,\mathcal{N}_2) alors elle converge aussi dans (E,\mathcal{N}_1) .
- 3. Soit E un \mathbb{R} -espace vectoriel muni d'un produit scalaire $\langle \cdot, \cdot \rangle$. Montrer que

$$\forall x, y \in E$$
, $|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$.

Exercice 2. Pour tout $(a, b, c) \in \mathbb{R}^3$, on définit la forme quadratique $Q_{(a,b,c)}$ sur \mathbb{R}^2 définie par :

$$\forall (x, y) \in \mathbb{R}^2$$
, $Q_{(a,b,c)}(x, y) = ax^2 + 2bxy + cy^2$.

- 1. Soit $(a, b, c) \in \mathbb{R}^3$.
 - (a) Quelle est la matrice réelle symétrique $B_{(a,b,c)}$ associée à $Q_{(a,b,c)}$?
 - (b) À quelles conditions sur (a, b, c) les valeurs propres de $B_{(a,b,c)}$ sont-elles strictement positives?
- 2. Justifier que les applications $\phi: \mathbb{R}^3 \to \mathbb{R}$, $(a, b, c) \mapsto a + c$ et $\psi: \mathbb{R}^3 \to \mathbb{R}$, $(a, b, c) \mapsto ac b^2$ sont continues.
- 3. Montrer que l'ensemble des $(a, b, c) \in \mathbb{R}^3$ tels que l'équation cartésienne $Q_{(a,b,c)}(x,y) = 1$ définisse une ellipse de \mathbb{R}^2 est un ouvert de \mathbb{R}^3 .
- 4. Déterminer la nature de la conique définie par l'équation cartésienne $Q_{(1,-2,1)}(x,y)=2$.

Exercice 3. Soit $n \in \mathbb{N}^*$ et $E = M_n(\mathbb{R})$. On définit le sous-espace vectoriel des matrices stochastiques

$$S = \left\{ A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in M_n(\mathbb{R}) \mid \forall i, j \in \{1, \dots, n\}, a_{i,j} \ge 0, \ \forall i \in \{1, \dots, n\}, \sum_{j=1}^n a_{i,j} = 1 \right\}$$

- 1. Justifier que, pour tout $i, j \in \{1, \dots, n\}$, les applications $f_{i,j} : E \to \mathbb{R}$, $A \mapsto a_{i,j}$ et $g_i : E \to \mathbb{R}$, $A \mapsto \sum_{j=1}^n a_{i,j}$ sont continues.
- 2. Montrer que S est un fermé de E.
- 3. Montrer que S est un compact de E.
- 4. Montrer que S est convexe [c'est-à-dire que : pour tout $A, B \in S$, le segment [A, B] est inclut dans S].

Exercice 4. Soit $E = \mathbb{R}[X]$ le \mathbb{R} -espace vectoriel des polynômes à coefficients réels. Pour tout

$$P = \sum_{i=0}^{p} a_i X^i \in \mathbb{R}[X] \text{ (avec } p \in \mathbb{N} \text{ et } a_0, \dots, a_p \in \mathbb{R}) \text{ on definit } ||P|| = \max_{0 \le i \le p} |a_i| \text{ et } \mathcal{N}(P) = \sum_{i=0}^{p} |a_i|.$$

- 1. Montrer que $\|\cdot\|$ et \mathcal{N} définissent des normes sur E.
- 2. Montrer que \mathcal{N} domine $\|\cdot\|$.
- 3. Soit $(P_n)_{n\in\mathbb{N}^*}\in E^{\mathbb{N}^*}$ la suite définie par : $P_n=\frac{1}{n}\sum_{i=1}^n X^i$. En étudiant la convergence de $(P_n)_{n\in\mathbb{N}^*}$, montrer que les normes $\|\cdot\|$ et \mathcal{N} ne sont pas équivalentes.