

Examen du 10 juin 2025 - durée 2h

Les calculatrices, téléphones portables, etc. sont interdits pendant l'épreuve. On pourra admettre la réponse à une question afin de répondre aux questions suivantes.

(L'examen est imprimé au format recto-verso.)

Exercice 1 (Les questions en italique sont des questions de cours).

- 1. Soit E un espace vectoriel réel de dimension finie.
 - a) Enoncer, sans démonstration, la loi d'inertie de Sylvester.
 - b) Soient q et q' deux formes quadratiques sur E. Montrer qu'elles sont équivalentes si et seulement si sgn(q) = sgn(q').
- 2. En notant $x=(x_1,x_2,x_3,x_4)$ et $y=(y_1,y_2,y_3,y_4)$, soit l'application

$$\varphi: \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}, \quad \varphi(x,y) = \sum_{i+j \in \, 2\mathbb{N}+1} x_i \, y_j \; .$$

- a) Montrer que φ est une application bilinéaire sur \mathbb{R}^4 . De plus, écrire la matrice associée à φ dans la base canonique.
- b) Peut-on définir une forme quadratique $q_{\varphi}: \mathbb{R}^4 \to \mathbb{R}$ associée à φ ? Si c'est le cas, écrire q_{φ} et trouver sa signature. Sinon, justifier.
- 3. Soit $E = \mathbb{R}[X]_3$ muni de la base $\mathcal{B} = \{1, X, X^2, X^3\}.$

Trouver des sous-espaces vectoriels de dimension maximale où la forme quadratique suivante est positive, négative, définie positive et définie négative :

$$q(f) = f(0)^{2} - f'(1)^{2} - f'''(2)^{2}.$$

Exercice 2. Soit E l'espace des séries numériques de carré sommable, muni du produit scalaire

$$\langle \sum_{n\geq 1} u_n | \sum_{n\geq 1} v_n \rangle = \sum_{n=1}^{\infty} u_n v_n, \quad \text{pour tout } \sum_{n\geq 1} u_n, \sum_{n\geq 1} v_n \in E.$$

Soit $F \subset E$ le sous-espace vectoriel engendré par $u^{(1)}, u^{(2)}, u^{(3)}$ qui sont, respectivement, les séries dont le n-ème terme est donné par

$$u_n^{(1)} = \left\{ \begin{array}{ll} 1 & n=1 \\ 0 & sinon \end{array} \right. , \qquad u_n^{(2)} = \left\{ \begin{array}{ll} 2 & n=1,2 \\ 0 & sinon \end{array} \right. , \qquad u_n^{(3)} = \frac{1}{3^n} \, .$$

(Ainsi, $u^{(3)}$ est une série géométrique de raison $\frac{1}{3}$.)

- 1. Montrer que $\mathcal{B} = \{u^{(1)}, u^{(2)}, u^{(3)}\}$ est une famille libre de F.
- 2. Orthonormaliser la famille ${\mathcal B}$ par le procédé de Gram-Schmidt.

Exercice 3 (Les questions en italique sont des questions de cours).

- 1. Enoncer et démontrer le théorème spectral réel. [Note : vous pourrez admettre, sans le démontrer, que toute matrice symétrique réelle M admet uniquement des valeurs propres réelles, et que pour chaque valeur propre on peut trouver un vecteur propre réel associé à M.]
- 2. Soit $E = \mathbf{M}_2(\mathbb{R})$ l'ensemble des matrices réelles de taille 2×2 . On considère le produit scalaire

$$\langle -|-\rangle : E \times E \to \mathbb{R}, \quad \langle A|B\rangle = \operatorname{tr}({}^t A B),$$

ainsi que la base $\mathcal B$ de E donnée par

$$e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ e_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ e_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ e_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

- a) Soit l'application linéaire $\psi: E \to E$, $\psi(A) = A + {}^tA$. Ecrire la matrice M_{ψ} de ψ dans la base \mathcal{B} et en déduire que ψ est un endomorphisme symétrique.
- b) Calculer les valeurs propres de M_{ψ} , et trouver pour chacune d'entre elles une base de l'espace propre formée de vecteurs propres réels (écrits en terme de \mathcal{B}).
- c) Peut-on appliquer le théorème spectral réel à l'application linéaire $\tilde{\psi}: E \to E$ définie par $\tilde{\psi}(e_{11}) = e_{12}, \ \tilde{\psi}(e_{12}) = e_{21}, \ \text{et} \ \tilde{\psi}(e_{21}) = \tilde{\psi}(e_{22}) = 0$?

Exercice 4. Soit $a \in \mathbb{R}$ et soit $E = \mathbb{R}^3$ muni du produit scalaire standard. Soit f_a l'endomorphisme de E dont la matrice en la base canonique est :

$$M_a = rac{1}{3} \left(egin{array}{ccc} 2 & 2 & 1a \ -2 & 1 & 2a \ -1 & 2 & -2a \ \end{array}
ight)$$

- 1. Montrer que f_1 et f_{-1} sont orthogonaux.
- 2. Montrer que f_{-1} est une rotation dont on précisera l'axe et l'angle.
- 3. Est-ce que f_{-1} est diagonalisable sur \mathbb{R} ? Sur \mathbb{C} ?
- 4. Montrer que f_1 est une rotation-miroir dont on précisera l'axe et l'angle.