L2 - Math4C Examen Session 2 - Géométrie Durée : 2h

L'usage de tout appareil électronique est interdit. Les documents ne sont pas non plus autorisés. La rédaction et la clarté des arguments seront prises en compte dans la notation.

Exercice (1):

- (a) Donner la définition d'un sous-ensemble convexe d'un espace affine \mathcal{E} .
- (b) Soient C_1 et C_2 deux sous-ensembles convexes de \mathcal{E} . Soit

$$\mathcal{B} = \{Bar \left(\begin{array}{cc} C_1 & C_2 \\ t & 1-t \end{array} \right) | C_1 \in \mathcal{C}_1, C_2 \in \mathcal{C}_2, \ t \in [0,1] \}.$$

- (i) Montrer que $\mathcal{B} \subset \mathcal{E}$ est convexe.
- (ii) Soit \mathcal{F} un sous-ensemble convexe de \mathcal{E} qui contient \mathcal{C}_1 et \mathcal{C}_2 . Montrer que \mathcal{F} contient \mathcal{B} .
- (c) VRAI ou FAUX? Indiquer, pour chaque assertion suivante, si elle est VRAIE ou FAUSSE (sans justification) :
 - (i) Soit \mathcal{E} un espace affine, et soient \mathcal{D}_1 , \mathcal{D}_2 et \mathcal{D}_3 trois droites de \mathcal{E} telles que \mathcal{D}_1 est parallèle à \mathcal{D}_2 et à \mathcal{D}_3 . Alors \mathcal{D}_2 est parallèle à \mathcal{D}_3 .
 - (ii) Soient \mathcal{D}_1 , \mathcal{D}_2 et \mathcal{D}_3 trois droites de \mathbb{R}^3 telles que \mathcal{D}_1 est orthogonale à \mathcal{D}_2 et à \mathcal{D}_3 . Alors \mathcal{D}_2 est parallèle à \mathcal{D}_3 .
 - (iii) Soit \mathcal{E} un espace affine, et $f: \mathcal{E} \to \mathcal{E}$ une application affine injective. Si \mathcal{D} est une droite dans \mathcal{E} , alors $f(\mathcal{D})$ est aussi une droite dans \mathcal{E} .
 - (iv) Soit \mathcal{P} un plan affine euclidien, et soit $f: \mathcal{P} \to \mathcal{P}$ une application affine injective. Si \mathcal{C} est un cercle dans \mathcal{E} , alors $f(\mathcal{C})$ est aussi un cercle dans \mathcal{E} .

Exercice (2): Soit \mathbb{C} le plan complexe avec sa structure euclidienne canonique, et soient a=3+i, b=1+3i et c=0.

- (a) Trouver l'équation de la droite passant par a et b.
- (b) Montrer que le triangle *abc* est isocèle.
- (b) Trouver le centre du cercle passant par a, b et c.

Exercice (3)

- (a) Soient Ω , A et B trois points alignés dans un espace affine. On pose $\overline{\Omega A}$ et $\overline{\Omega B}$ les mesures algébriques de ΩA et de ΩB par rapport à un repère. Montrer que $\Omega = Bar\left(\begin{array}{cc} A & B \\ -\overline{\Omega B} & \overline{\Omega A} \end{array}\right)$.
- (b) Soient A, B et C trois points non alignés dans un espace affine \mathcal{E} . Soit E le milieu de [AB], et soit $G = Bar\begin{pmatrix} A & B & C \\ -2 & -2 & 15 \end{pmatrix}$. Montrer que G, C et E sont alignés. Décrire E comme un barycentre de G et C.

Exercice (4): On considère un plan affine euclidien \mathcal{P} . Soient \mathcal{D} une droite dans \mathcal{P} et s la reflexion d'axe \mathcal{D} . Soit r une rotation de centre Ω . Montrer que la composée $r \circ s$ (resp. $s \circ r$) est une reflexion si et seulement si $\Omega \in \mathcal{D}$.