
Mécanique des Milieux Continus 2 - 20 m	ai 2025 L3 SPI
0 0	← codez votre numéro d'étudiant ci-contre, et écrivez votre nom et prénom ci-dessous. Nom et prénom :
Questions de cours : cocher la bonn Cours 1 : Dans un écoulement de fluide par la conservation de l'énergie cinétique dans la conservation de la pression totale dans la conservation de la pression motrice dans	rfait stationnaire le théorème de Bernoulli traduit : s l'écoulement l'écoulement
Cours 2 : Un fluide en mouvement a un de l'écoulement est stationnaire et le fluide in le fluide est parfait le fluide est incompressible	
Cours 3: Dans un liquide au repos: \square la pression motrice $p^* = p + \rho gz$ est const \square la pression motrice $p^* = p + \rho gz$ augment \square la pression statique p est constante	
Cours 4 : Pour calculer l'action d'un fluid utiliser le théorème de la statique utiliser le théorème d'Euler	e en écoulement sur une paroi on peut :

Exercices

Exercice 1:

Deux vases A_1 et A_2 (ouverts à la pression atmosphérique) de sections $S_1 = 50 \text{ cm}^2$ et $S_2 = 10 \text{ cm}^2$, dont les bases sont dans un même plan horizontal, communiquent par un tube fin de volume négligeable, muni d'un robinet R initialement fermé.

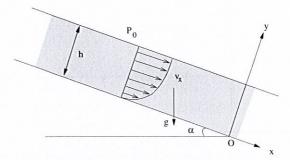
A.N.:
$$\rho_{alcool} = \rho_a = 0.79 \ 10^3 \ kg.m^{-3}, \, \rho_{Hg} = \rho_m = 13.6 \ 10^3 \ kg.m^{-3}$$

1. (2 pts) Le robinet R étant fermé, on verse un litre de mercure dans le vase A_1 et 0,5 litre de mercure dans le vase A_2 . Quelles sont les hauteurs h_1 et h_2 du mercure dans les vases ?

F P1 J Ne pas cocher - Réservé au correcteur

2. On ouvre le robinet R. Après retour à l'équilibre, on note x_1 et x_2 les hauteurs correspondant aux déplacements des deux surfaces libres du mercure dans les vases A_1 et A_2 respectivement.

(2 pts) Indiquer x_1 et x_2 sur le schéma au dessus et écrire les deux équations liant x_1 et x_2 (Indications : écrire les volumes déplacés après l'ouverture du robinet et on pourra noter h la nouvelle hauteur des surfaces libres dans les vases A_1 et A_2). Déterminez les expressions de x_1 et x_2 en fonction de S_1 , S_2 , h_1 et h_2 .


☐F ☐P1 ☐J Ne pas cocher - Réservé au correct		

(1 pt) Faire les applications numé	riques :	
(le mercure et l'alcool sont non note maintenant y_1 et y_2 les hau	miscibles, l'alcool est u uteurs correspondant	nant 1,5 litres d'alcool dans le vase A_1 uniquement situé dans le vase A_1). On a aux déplacements des surfaces du n note H_1 la hauteur de la colonne
3.1. (1 pt) Calculer H_1 :		
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
3.2. (2 pts) Faire un nouveau sc y_2 et H_1 (Indication : x_1 et x_2 ne		luides et les différentes cotes utiles : y_1 ,
	□F □P1 □.	J Ne pas cocher - Réservé au correcteur
3.3. (1 pt) Donner la relation lia	A STATE OF THE PARTY OF THE PAR	
	FP1	J Ne pas cocher - Réservé au correcteur

4. (3 pts) Détermin	er l'express	ion de y_2 dan	is le vase A_2 .	Déduire y_1 o	le la question précédent
	□F]P1	P3J	Ne pas cocher	· - Réservé au correcteu
pt) Faire les applica	ations numé	ériques.			
$y_1 = 1.29 \ cm$ $y_2 = 3.45 \ cm$		$ y_1 = 3.5 $ $ y_2 = 1.4 $			$y_2 = 0.45 \ cm$ $y_1 = 0.29 \ cm$
6. (1 pt) Que vaut l face libre de mercu			entre la sur	face libre d'al	cool dans le vase A_1 et $$
		d=0.2	826~cm		$d=28,26\ cm$

Exercice 2:

On considère l'écoulement plan stationnaire d'un fluide visqueux incompressible sur un plan incliné d'un angle α par rapport au plan horizontal. Le fluide est soumis aux seules forces de pesanteur $(\vec{g}: \text{vertical descendant})$. L'écoulement est dirigé suivant l'axe $O\vec{x}$, et on choisit l'axe $O\vec{y}$ perpendiculaire à $O\vec{x}$ (voir figure ci-contre). On note h l'épaisseur constante de l'écoulement, et P_0 la pression atmosphérique à la surface libre.

1. (1 pt) En supposant que le champ des vitesses est de la forme : $\vec{V}=V_x$ \vec{e}_x $(V_y=0)$, montrer que la composante V_x ne dépend que de y.

F P1 IJ Ne pas cocher - Réservé au correcte				

2. (2 pts) À l'aide de la question précédente et des hypothèses, donnez l'expression des équations de Navier-Stokes sur les axes Ox et Oy (indication : écrire \vec{g} dans le repère Oxy et utiliser les équations de Navier-Stokes du formulaire).

☐F ☐P1 ☐J Ne pas cocher - Réservé au correcteur

3. (2 pts) Calculer la pression p(x,y) et montrer à l'aide des conditions aux limites qu'elle ne dépend que de y (Indication : Attention aux constantes d'intégration).

	☐F ☐P1 ☐J Ne pas cocher - Réservé au correcteur

4. (2 pts) Écrire la première équation de Navier-Stokes (projection sur l'axe Ox). En dé l'équation différentielle du second ordre qui permet de déterminer la vitesse V_x (Indicat utiliser les résultats de la question précédente et de la question 1).	duire ion
☐F ☐P1 ☐J Ne pas cocher - Réservé au correc	teur
5. (3 pts) La condition limite à la surface libre $(y=h)$ est : $\frac{dV_x}{dy}=0$. En précisant la cond limite à la paroi $(y=0)$, déduire l'expression de $V_x(y)$ en fonction de ρ , g , α , h , y et μ .	ition
☐F ☐P1 ☐P2 ☐J Ne pas cocher - Réservé au correc	eur
	•
	•
	•
6. (2 pts) Calculer la vitesse moyenne V_m .	teur
	3. 4 .3
Formulaire :	
Équation de continuité (ECM) : $\frac{\partial \rho}{\partial t} + div(\rho \vec{v}) = 0$	
Éq. de Navier-Stokes (incompressible) dans le champ de pesanteur : $ ho rac{d ec{V}}{dt} = ho ec{g} - g ec{rad} \; p + \mu ec{\Delta} ec{V}$	