Etude du mouvement d'un disque sur une idée A. El Hajj et O. Kabbani (Etudiants de L3-Mécanique, 2006-2007)

L'espace est rapporté à un repère orthonormé direct $R = (O, \vec{x_1}, \vec{x_2}, \vec{x_3})$ supposé galiléen, où le vecteur $\vec{x_2}$ est vertical ascendant. On suppose l'existence d'un champ de pesanteur noté $-g\vec{x_2}$.

Le système étudié, noté S, est un disque parfaitement rigide de rayon R. Son épaisseur est très faible par rapport à son rayon. Pour cette raison, il est modélisé comme étant sans épaisseur. Le repère lié à S, orthonormé direct, est noté $R_s=(C,\vec{I},\vec{J},\vec{K})$ où C est le centre géométrique du disque. On note b_s la base de R_s . Les vecteurs \vec{I} et \vec{J} sont dans le plan du disque. Le matériau constitutif de S est supposé homogène et ρ désigne sa densité surfacique de masse. La masse totale de S est notée m. On donne la matrice d'inertie de S au point C, dans b_s :

$$[J_C(S)]^{b_s} = \frac{mR^2}{4} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

On considère également un plateau rigide oscillant, noté P (Fig. 1). On note $R'=(O,\vec{u},\vec{v},\vec{x_3})$ le repère orthonormé direct lié à P dont b' désigne la base, pour lequel le vecteur \vec{v} est orthogonal au plan de P et le vecteur \vec{u} est contenu dans le plan du plateau. Si on peut estimer que la longueur du plateau (sa dimension suivant l'axe $(O, \vec{x_3})$) est infinie, en revanche, sa largeur (sa dimension suivant l'axe (O, \vec{u})) vaut 2L, telle que : $\overrightarrow{OE_1} = -L\vec{u}$ et $\overrightarrow{OE_2} = L\vec{u}$, E_1 et E_2 désignant les points situés à chacune des extrémités de plateau (dans le plan $x_3 = 0$). Ce plateau est en liaison rotoïde parfaite d'axe $(O, \vec{x_3})$ sur une tige verticale dont les extrémités sont les points O et E, où E est rigidement fixé dans un bâti fixe dont R est le repère lié. On note : $\theta = (\vec{x_1}, \vec{u}) = (\vec{x_2}, \vec{v})$. En se plaçant Dans le plan $R = (O, \vec{x_1}, \vec{x_2}, \vec{x_3})$

Le disque S roule sans glisser sur la pente du plateau P (Fig. 1) de telle sorte que le plan (C, \vec{I}, \vec{J}) reste, à tout instant, dans le plan $(O, \vec{x_1}, \vec{x_2})$. On note : $\varphi = (\vec{x_1}, \vec{I}) = (\vec{x_2}, \vec{J})$. On désigne par A le point géométrique où se produit le contact entre le disque et le plateau et on pose : $\overrightarrow{OA} = \lambda \vec{u}$. On note A_p le point matériel de P au lieu du contact et A_s celui de S en ce même lieu.

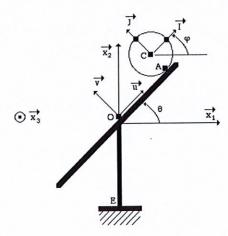


FIGURE 1 - Le système en mouvement

Cinématique (le repère R' sera utilisé comme repère de 1 projection

- 1) Donner les éléments de réduction du torseur cinématique de P par rapport à R en O.
- 2) Donner les éléments de réduction du torseur cinématique de S par rapport à R en C.
- 3) Trouver l'équation induite par la condition de roulement sans glissement en A.
- 4) En utilisant l'équation précédente, réécrire les éléments de réduction du torseur cinématique de S par rapport à R en C où la grandeur λ a été éliminée. Cette expression du torseur cinématique sera celle qu'il convient d'utiliser dans la suite.

Cinétique (le repère R' sera utilisé comme repère de pro-2 jection

- 1) Donner les éléments de réduction du torseur cinétique de S par rapport à R en C.
- 2) Donner les éléments de réduction du torseur dynamique de S par rapport à R en C.
- 3) Calculer l'énergie cinétique de S par rapport à R.

Dynamique (le repère R' sera utilisé comme repère de projection

- 1) Faire le bilan des sollicitations mises en jeu et donner le torseur qui modélise chacune d'elle, ainsi que sa puissance développée dans le mouvement de S par rapport à R et éventuellement le potentiel dont elle dérive.
- 2) Ecrire les équations que l'on peut déduire du Principe Fondamental de la Dynamique appliqué à S.
- 3) Montrer que si l'on suppose connues les fonctions $\lambda(t)$, $\theta(t)$ et $\varphi(t)$, alors on connait, au cours du temps, l'ensemble des torseurs d'effort auxquels est soumis le système.
- 4) On suppose que la fonction $\theta(t)$ est une donnée. Ecrire les 2 équations différentielles (couplées) qui gouvernent l'évolution horaire des paramètres $\lambda(t)$ et $\varphi(t)$.
- 5) Etude d'un mouvement particulier. On suppose que le mouvement du système est obtenu à partir des conditions initiales (à $t=t_0=0$) suivantes sur l'angle $\varphi:\varphi(t_0)=\varphi_0,\dot{\varphi}(t_0)=\dot{\varphi}_0$. Concernant le paramètre λ , on suppose que le point de contact à l'instant initial coïncide avec l'extrémité E_2 du plateau, c'est-à-dire qu'on donne $\lambda(t_0)=\lambda_0=L$. La valeur de $\dot{\lambda}(t_0)=\dot{\lambda}_0$ est donnée par la relation de roulement sans glissement (valable à tout instant) : $\dot{\lambda}(t) = R(\dot{\theta}(t) - \dot{\varphi}(t))$. En effet, puisque la fonction $\theta(t)$ est connue, c'est-à-dire que l'on a accès à ses valeurs et celles de ses dérivées successives à tout instant, on a en particulier accès à : $\theta(t_0) = \theta_0$, $\theta(t_0) = \theta_0$ et $\ddot{\theta}(t_0) = \ddot{\theta}_0$. Par suite : $\dot{\lambda}(t_0) = \dot{\lambda}_0 = R(\dot{\theta}(t_0) - \dot{\varphi}(t_0))$.

On se place ici dans le cas particulier suivant :

- $-\theta(t) = \theta_{t_0} = \text{constante};$
- $$\begin{split} & \varphi(t_0) = \varphi_0 = 0, \dot{\varphi}(t_0) = \dot{\varphi}_0 = 0; \\ & \lambda(t_0) = \lambda_0 = L \text{ et par conséquent } \dot{\lambda}(t_0) = \dot{\lambda}_0 = 0. \end{split}$$

Déterminer $\lambda(t)$ et $\varphi(t)$.