

Licence Sciences Technologies Santé

L3 Mention CHIMIE

Année universitaire 2024-25

2e session

Examen UE51 Mécanismes réactionnels en chimie organique 23 juin 2025

Durée 2h. Aucun document autorisé. La note tiendra compte du soin et de la rédaction.

Problème 1. Synthèse organique (4 points)

Donner les structures des composés A'-G' sans donner les mécanismes.

$$H = H \xrightarrow{HgSO_4} A'$$

$$H_2O / H_2SO_4$$

Br
$$\xrightarrow{HO}$$
 OH \xrightarrow{Mg} $\xrightarrow{E'}$ $\xrightarrow{Et_2O}$ $\xrightarrow{E'}$ $\xrightarrow{1) \text{ acétone}}$ $\xrightarrow{G'}$

Problème 2. Réactivité des alcènes (4 points)

- 2.1) Un alcène A est soumis à 2 traitements :
- * Solution de KMnO₄ concentré à chaud : on obtient de l'acide éthanoïque et de l'acide propanoïque.
- * Solution de KMnO₄ dilué à froid suivi d'une hydrolyse : 2 composés **B1** et **B2** de configurations absolues respectivement (R,R) et (S,S) sont obtenus.
- A l'aide de ces informations, déterminer la structure de l'alcène A et des composés B1 et B2.
- 2.2) L'alcène $\bf A$ est d'autre part traité par l'acide perbenzoïque PhCO₃H et conduit à un composé $\bf C$. Donner sa structure.
- 2.3) C est hydrolysé par une solution de soude. On obtient 2 stéréoisomères. Les représenter et donner leur relation de stéréochimie avec les composés B1/B2.

Problème 3. Cétone conjuguée (4 points)

Comment passer de la cyclohex-2-énone aux 6 molécules ci-dessous ? Décrire les réactions mises en jeu sans détailler les mécanismes.

a)
$$\bigcirc$$
 $=$ CH_2 d) \bigcirc $=$ O OH CH_3 c) \bigcirc OH \bigcirc OH

Problème 4. Synthèse (8 points)

On considère la série de réactions suivante pour préparer le dialdéhyde IX représenté ci-dessous :

II est un aldéhyde non énolisable. V contient une fonction aldéhyde suite à l'ozonolyse.

- 4.1) Identifier les composés I à VIII.
- 4.2) Pourquoi dit-on que II est non énolisable ?
- 4.3) Expliquer l'intérêt de l'étape III \rightarrow IV.
- 4.4) Justifier la régiosélectivité observée lors de l'étape $VI \rightarrow VII$.
- 4.5) Lors de l'étape $VII \rightarrow VIII$, quel produit aurait été obtenu si d'autres conditions d'oxydation avaient été utilisées (KMnO₄ concentré par exemple) ?