

Licence Sciences Technologies Santé L3 Mention CHIMIE Année universitaire 2024-25

Examen UE51 Mécanismes réactionnels en chimie organique 9 janvier 2025

Durée 2h. Aucun document autorisé.

La note tiendra compte du soin et de la rédaction.

Problème 1. Réactivité des alcènes (3 points)

Le (*Z*)-pent-2-ène traité par l'acide bromhydrique conduit à un mélange de deux isomères **I** (achiral) et **II** (chiral). Par action de potasse concentrée, **II** mène à un mélange de trois composés, l'un étant majoritaire. Le traitement de cet isomère majoritaire par une solution de dibrome donne **III** sous forme de 2 énantiomères.

Identifier tous les composés, décrire le mécanisme de formation de III en expliquant la stéréochimie de la réaction et préciser les configurations absolues des deux énantiomères obtenus.

Problème 2. Synthèse d'un dérivé multifonctionnel (5 points)

On considère la série de réactions suivante pour synthétiser le composé i :

$$[A] \xrightarrow{Br} \begin{bmatrix} A \end{bmatrix} \xrightarrow{Br} \begin{bmatrix} B \end{bmatrix} \xrightarrow{LiAlH_4} \begin{bmatrix} C \end{bmatrix} \xrightarrow{D} \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix}$$

- 2.1) LDA et NaH sont des bases fortes. Donner la structure de la LDA.
- 2.2) Identifier le sel [A] et les composés B à H en décrivant brièvement les réactions.
- 2.3) **B** est un dérivé carbonylé non énolisable. Pourquoi dit-on que **B** est non énolisable ?
- 2.4) Expliquer l'intérêt de l'étape $C \rightarrow D$.

Problème 3. Synthèse (6 points)

Le composé **G'** (C₁₀H₁₆O₃) est un intermédiaire dans la synthèse des prostacyclines qui possèdent des propriétés anticoagulantes. Une méthode de synthèse de ce composé en plusieurs étapes est proposée ci-dessous :

Etape 1

- 3.1) Donner le mécanisme de formation de A', justifier la régiosélectivité de la réaction et indiquer pourquoi on obtient A' sous forme d'un mélange racémique.
- 3.2) Expliquer la formation de B'.

Etape 2

3.3) Donner la structure de C'. A quelle famille de composé appartient C'?

Etape 3

C'
$$\xrightarrow{\text{BuLi (2 \'equiv)}}$$
 [C"] $\xrightarrow{\text{1) B' (1 \'equiv)}}$ D' $\xrightarrow{\text{i}}$ E'

- 3.4) Donner la structure de l'intermédiaire [C"] puis détailler le mécanisme de formation de D'(cf note). Donner le nom de la réaction.
- 3.5) Expliquer l'intérêt d'utiliser deux équivalents de butyllithium ?
- 3.6) Donner le(s) réactif(s) nécessaire(s) pour effectuer la transformation i (D' → E').

Note : Lors de l'étape $[C"] \rightarrow D'$, on considérera que la fonction alcool de B' ne réagit pas avec [C"].

Etape 4

- 3.7) Proposer un mécanisme de formation de F' à partir de E' (sans détailler les aspects stéréochimiques).
- 3.8) En partant d'un seul énantiomère de F', la réaction conduit à un seul isomère G'. Donner la structure de G'.

Problème 4. Réactivité et synthèse du phénol (6 points)

- 4.1) Proposer une méthode de synthèse du phénol.
- 4.2) Décrire le mécanisme et les réactifs utilisés pour la réaction ci-dessous :

4.3) Attribuer (en justifiant) les pKa (7,1; 9,9; 10,2; 17) des couples acido-basiques aux composés suivants :

$$\stackrel{\mathsf{OH}}{\longleftarrow} \qquad \stackrel{\mathsf{OH}}{\longleftarrow} \qquad$$

4.4) Le schéma réactionnel suivant permet de transformer le dérivé phénolique $\underline{\mathbf{1}}$ en composé bicyclique $\underline{\mathbf{10}}$.

- a/ Donner la nature des réactifs utilisés dans les étapes (a)-(g).
- b/ Préciser les structures de 4, 7 et 8.
- c/ Donner le mécanisme des étapes de synthèse $\underline{5} \rightarrow \underline{6}$ et $\underline{9} \rightarrow \underline{10}$.