Année 2024-2025 Jeudi 26 juin 2025

Filière: Licence 3 Physique/Chimie - SPI Mécanique

Session: 2

CONTROLE TERMINAL UE82 Phys61 Optique moderne

Durée 2h - Sans document, calculatrice autorisée. Téléphones portables <u>éteints</u>. Les 2 exercices sont indépendants et peuvent être traités dans un ordre indifférent. La présentation et la rédaction de la copie seront prises en compte.

Exercice 1 : Réseau de diffraction

Un écran situé dans le plan (xy) comporte N fentes infiniment longues identiques, de largueur b, équidistantes et séparées les unes des autres par la distance $a \gg b$ (le pas du réseau) et numérotées de 1 à N. On repère les points de la fente n par leur coordonnées cartésiennes x, y dans le plan de l'écran :

$$na - \frac{b}{2} < x < na + \frac{b}{2}$$

Une onde plane monochromatique de longueur d'onde λ arrive avec une incidence i sur les fentes et on observe la lumière diffractée à l'infini (diffraction de Fraunhofer) dans la direction faisant l'angle θ avec la normale au plan des fentes (cf. Fig. (1)).

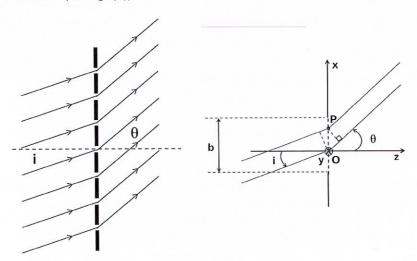


FIGURE 1 -

- 1. On considère dans un premier temps une seule fente (la fente 1 centrée sur l'origine des coordonnées). Calculez le déphasage $\varphi(i,\theta)$ entre l'onde issue d'un point quelconque M de cette fente et celle qui est issue de l'origine des coordonnées, qui servira de référence des phases. En appliquant le principe d'Huygens-Fresnel, déduisez-en l'amplitude complexe $A_1(u)$ de l'onde diffractée par la fente. On notera A_0 l'amplitude de l'onde incidente, et on pourra poser $u=\frac{\pi b \left(\sin\theta-\sin i\right)}{\lambda}$.
- 2. Exprimez le déphasage $\psi(i, \theta)$ entre les ondes issues de deux fentes consécutives (cf. Fig. (2)).
- 3. Montrez alors que l'amplitude complexe A(u,v) de l'onde résultant de la superposition à l'infini des ondes provenant des N fentes est la somme des termes d'une suite géométrique que l'on calculera. On pourra poser $v=\frac{\pi a \left(\sin \theta \sin i\right)}{\lambda}$.
- 4. Déduisez-en l'éclairement diffracté $\mathcal{E}(u,v)$ dans la direction θ .

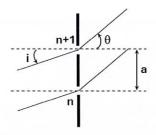


FIGURE 2 -

- 5. Etablissez la formule dite formule fondamentale des réseaux donnant les directions θ où l'on observe des maxima de lumière diffractée d'ordre k.
- 6. Si on travaille avec un réseau de pas $a=1,5\,\mu m$ et une longueur d'onde de $\lambda=530\,nm$, quel est l'ordre le plus élevé que l'on peut observer à l'incidence normale? Et pour une incidence de 45° ?
- 7. On définit la dispersion angulaire D_a du réseau par la relation $D_a = \frac{d\theta}{d\lambda}$, où $d\theta$ est l'écart angulaire d'un maximum principal correspondant à une petite variation $d\lambda$ de la longueur d'onde, dans un ordre k donné. Etablissez l'expression de D_a en fonction de k, a et θ , et donnez sa valeur numérique pour chacune des incidences précédentes et l'ordre le plus élevé, en rad.nm⁻¹.
- 8. On appelle déviation la quantité $D=\theta-i$. Montrez que cette déviation passe par un extremum D_{min} (que l'on admettera être un minimum) lorsque $\theta=-i$. Déduisez-en alors la relation

$$\sin\left(\frac{D_{min}}{2}\right) = \frac{k\lambda}{2a}$$

- 9. On mesure avec un réseau (différent du précédent de la question 6) la déviation minimale $D_{min1} = 31^{\circ}42' = 31,7^{\circ}$ pour la raie verte du mercure ($\lambda_1 = 546,1 \, nm$) pour le spectre d'ordre 2, et la déviation minimale $D_{min2} = 18^{\circ}32' = 18,533^{\circ}$ pour la raie rouge du cadmium dans l'ordre 1. Calculez :
 - (a) l'angle d'incidence i correpondant à la déviation minimale de la raie verte;
 - (b) la longueur d'onde de la raie rouge du cadmium;
 - (c) le pas a du réseau ainsi que son nombre de traits par millimètre.

Exercice II: Polarisation

Une onde plane progressive monochromatique de pulsation ω et de longueur d'onde dans le vide λ_0 se propageant suivant Oz est décrite par le champ électrique suivant :

$$E_x = E_0 \cos(\omega t - k_0 z); E_y = E_0 \sin(\omega t - k_0 z); E_z = 0$$

avec $k_0 = \omega/c = 2\pi/\lambda_0$.

- 1. Déterminez l'état de polarisation (linéaire, elliptique ou circulaire gauche ou droite) de cette onde. On considère une lame quart-d'onde pour la longueur d'onde dans le vide λ_0 , d'épaisseur e dont les lignes neutres coïncident avec les axes Ox et Oy. Pour une onde incidente polarisée rectilignement suivant Oy, l'indice de la lame est n_o ; Pour une onde incidente polarisée rectilignement suivant Ox, l'indice de la lame est n_e , avec $n_e < n_e$.
- 2. Le milieu constituant la lame est-il un milieu négatif ou positif?
- 3. Quelle est la relation entre n_o , n_e , e et λ_0 ?
- 4. La face d'entrée de la lame coïncide avec le plan z=0 et la lame reçoit l'onde définie à la question 1. Déterminez les composantes du champ \overrightarrow{E} après la traversée de la lame, et précisez son état de polarisation (linéaire, elliptique ou circulaire gauche ou droite).
- 5. Reprenez la question 4 en supposant que le champ incident est cette fois

$$E_x = E_0 \cos(\omega t - k_0 z); E_y = -E_0 \sin(\omega t - k_0 z); E_z = 0$$

Vous donnerez d'abord la polarisation de cette nouvelle onde incidente.