

Université de Bourgogne

L1 Sciences & Techniques - Physique Générale 1a (Phys1A2)

Contrôle continu 2 - 1h30 - calculatrice autorisée - aucun document

Lors des applications numériques, vérifier le nombre de chiffres significatifs et l'unité

Exercice 1 – (barème approximatif 2 points)

NOM:

Prénom:

- 1. Le principe fondamental de la dynamique est valable
- ☐ dans un repère cartésien
 - ☐ dans un référentiel galiléen
 - □ en l'absence de force
- 2. Un référentiel galiléen est un référentiel
 - □ dans lequel un système isolé a un mouvement rectiligne uniforme ou est au repos
 - ☐ dans lequel le bilan des forces est nul
 - □ cadastral situé au musée Galilée de Florence, en Italie

Exercice 2 – Eruption volcanique (barème approximatif 9 points)

Le Stromboli, volcan italien encore actif, culmine à 924 m. Il crache régulièrement des bombes volcaniques issues du magma. On note \vec{v}_0 la vitesse d'éjection de ces bombes, inclinée d'un angle α par rapport à l'horizontal (schéma ci-dessous). On néglige les frottements.

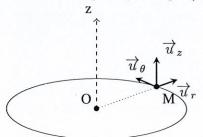
Données
$$m = 0.28 \,\mathrm{kg}$$
; $v_0 = 76.3 \,\mathrm{m \cdot s^{-1}}$; $\alpha = 50^{\circ} = 0.873 \,\mathrm{rad}$; $g = 9.81 \,\mathrm{m \cdot s^{-2}}$; $h = 924 \,\mathrm{m}$;

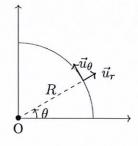
- 1. Donner les expressions littérales des composantes horizontale v_{0x} et verticale v_{0y} du vecteur \vec{v}_0 en fonction de v_0 et α .
- 2. a) Par application du PFD à un instant t, déterminer les deux composantes de l'accélération de M.
 - b) En déduire, compte tenu des conditions initiales, les composantes du vecteur vitesse.
 - c) En déduire, les équations horaires du mouvement de M x(t) et y(t), en tenant compte des conditions initiales x(0) = 0 et y(0) = h.
- 3. a) Déterminer l'équation cartésienne y = f(x) de la trajectoire.

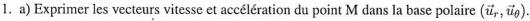
La figure ci contre représente les trajectoires y=f(x) pour différents angles d'éjection. Ces trajectoires sont toutes sous la courbe d'équation $y=h+\frac{v_0^2}{2g}-\frac{gx^2}{2v_0^2}$, appelée parabole de sureté car tout point situé au-delà n'est pas accessible par les bombes volcaniques, quel que soit l'angle d'éjection.

b) Etablir que la distance de sécurité au sol est telle que

$$x > \sqrt{\frac{2v_0^2h}{g} + \frac{v_0^4}{g^2}}$$

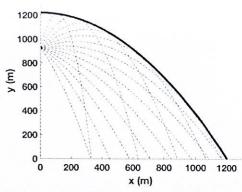

La calculer.


Exercice 3 – Voiture dans un virage (barème approximatif 9 points)

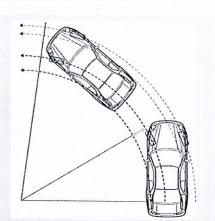

Une voiture tourne dans un virage avec une vitesse constante. On souhaite établir la vitesse maximale pour éviter un dérapage. Le virage est un arc de cercle de rayon R. On néglige les frottements de l'air mais on tient compte des frottements entre la route et la voiture. Ce sont des frottements de type frottements solides. Ces frottements sont orientés selon $\vec{u}_r: \vec{T} = -T\vec{u}_r$ et de norme $T = \mu N$ où \vec{N} est la réaction normale de la route.

Données
$$m = 1,50 \cdot 10^3 \,\mathrm{kg}$$
; $R = 200 \,\mathrm{m}$; $g = 9,81 \,\mathrm{m} \cdot \mathrm{s}^{-2}$

On utilise le repère cylindrique $(O, \vec{u}_r, \vec{u}_\theta, \vec{u}_z)$.


- b) Montrer que $v = R\dot{\theta}$.
- c) Etablir que le vecteur accélération peut s'écrire

$$\vec{a} = -\frac{v^2}{R}\vec{u}_r + R\ddot{\theta} \ \vec{u}_\theta + 0\vec{u}_z$$


- 2. a) Faire un schéma en indiquant les forces.
 - b) A l'aide du PFD établir l'expression de la réaction N de la route.
 - c) En déduire l'expression des frottements solides $T = \mu N$ en fonction de μ, m, q .
 - d) A l'aide du PFD, établir que la vitesse vaut $v = \sqrt{\mu Rq}$
- 3. Les frottements solides empêchent la voiture de déraper. Le dérapage apparaît lorsque les frottements solides ne sont plus suffisants. La voiture ne glisse pas tant que $T<\mu N$, ce qui conduit à $v<\sqrt{\mu Rg}$. Ainsi, la voiture peut prendre le virage à la vitesse maximale $v_{max}=\sqrt{\mu Rg}$.

Calculer v_{max} pour les conditions suivantes (l'exprimer en km · h⁻¹):

- a) pneus sur bitume sec; $\mu = 0,700$;
- b) pneus sur bitume humide; $\mu = 0,300$;
- c) Les pneus de formule 1 permettent d'atteindre des coefficients de frottements $\mu = 1,50$.

Courbes pointillées : trajectoire de bombes volcaniques pour différents angles d'éjection α . Courbe continue : parabole de sûreté.

