Introduction à la mécanique des fluides

CONTROLE TERMINAL – 2^{ème} session Durée : 2h Ven 20 juin 2025 – 8h – Amphi Bernard

pas de documents, pas de téléphone portable, calculatrice autorisée

Questions de cours (6 points)

1. Énoncez le principe d'Archimède.	1 pt
2 Explicitez le principe du Pascal en fluidique statique.	1 pt
3. Exprimez la loi de l'hydrostatique sous sa forme différentielle.	1 pt
4. Donnez les unités du coefficient de tension superficielle en fonction des N, m, J.	1 pt
5. Le nombre de Reynolds Re exprime le rapport des effets inertiels et de viscosité. Explicitez en quoi ce nombre de Reynolds peut être utile pour déterminer des régimes d'écoulement ?	1 pt
6. Le nombre de Stokes St exprime le rapport entre l'énergie cinétique et l'énergie dissipée. Explicitez en quoi ce nombre de Stokes peut être utile pour déterminer l'advection d'une	
particule dans un courant d'air ?	1 pt

Exercice 1. Pression relative et absolue (3 pt)

Un réservoir d'eau a une profondeur de 5 mètres. La densité de l'eau est de 1000 kg/m^3 . Calculez la pression relative et la pression absolue au fond du réservoir. On prendra pour l'accélération due à la gravité $g = 10 \text{ m/s}^2$ et la pression atmosphérique a été mesurée à 100 kPa.

Exercice 2. Mécanique des fluides dans un tuyau (7 pt)

Un fluide s'écoule à travers un tuyau horizontal. À la section 1, le diamètre du tuyau est de 4 cm et la vitesse du fluide est de 2 m/s. À la section 2, le diamètre du tuyau est réduit à 2 cm et la vitesse du fluide est inconnue. La pression à la section 1 est de 200 000 Pa.

- 1. Quelle équation relie les données des sections 1 et 2 du tuyau ? (0,5 pt) Comment peut-on simplifier cette équation ? (1 pt)
- 2. Donnez l'expression littérale de la pression à la section 2. Quelle est alors la donnée manquante nécessaire pour déduire P_2 ? (1,5 pt)

- 3. Quelle équation de conservation permettait de déterminer la valeur manquante ? (1 pt)
- 4. Quelles sont les aires des section 1 et 2 du tuyau ? (1 pt)
- 5. En déduire la vitesse v₂ du fluide dans la section 2. (1 pt)
- 6. Déterminer la pression P₂ dans la section 2. (1 pt)

Exercice 3. Viscosité (4 pt)

De l'huile de moteur s'écoule à travers un tube horisontal de longueur 2 mètres et de 2 cm de rayon. La contrainte de cisaillement τ mesurée est de 50 mN/m², et la vitesse d'écoulement est de 0,5 m/s. La loi de Newton donne la variation de τ en fonction de la viscosité μ et du gradient de vitesse dv/dy.

$$\tau = \mu \ dv/dy$$

- 1. Donnez les unités du gradient de vitesse et de la viscosité. (1 pt)
- 2. Est-ce une viscosité cinématique ou dynamique ? (1 pt)
- 3. Déterminer le gradient de vitesse pour ce tube rectiligne. (1 pt)
- 4. Calculez μ (1 pt)